Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь есть возможность читать онлайн «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том. 22. Сон разума. Математическая логика и ее парадоксы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том. 22. Сон разума. Математическая логика и ее парадоксы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том. 22. Сон разума. Математическая логика и ее парадоксы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Одним из важнейших открытий Гильберта было проведение четкого различия между уровнями языка, к которым принадлежат различные высказывания. Представьте себе урок английского языка, на котором учитель по-русски объясняет тонкости значения какого-то слова. В этот момент используются два языка: английский, который изучают ученики, и русский, который они используют в качестве инструмента. Это же происходит и с фразой вида «формула ¬ х ¬ y ( y = sx ) длиннее, чем формула ¬ х ( sx = 0)» — в ней сочетаются последовательности символов языка L и выражения «формула» и «длиннее», принадлежащие не к языку L , а к метаязыку, который мы используем, чтобы описать формальную систему, так сказать, извне. Термины «ноль», «следующее» и «равно» принадлежат к языку L , где они записываются как 0, sи =соответственно, однако слова «формула», «доказательство» и «истинный» принадлежат метаязыку и невыразимы на языке L .

Следовательно, при формализации арифметики все эти высказывания в рамках самой арифметики теряют смысл.

Но какое отношение все это имеет к парадоксам? Ведь целью программы Гильберта было избавить от них математику. Как мы отмечали в предыдущей главе, многие парадоксы связаны с самоотносимостью, которая вполне имеет право на существование в естественных языках, но нет никаких причин для того, чтобы она сохранялась в искусственных языках формальных систем. Когда мы озвучиваем парадокс Рассела на русском языке, нам кажется вполне логичным, что существует два класса множеств: одни принадлежат сами себе, другие — нет. Однако в формальной системе отношение принадлежности, примененное к двум переменным одного и того же типа, нарушает правила грамматики языка. Еще более интересным является парадокс лжеца: «эта фраза ложна». Чтобы эту фразу можно было рассматривать всерьез, формальная система должна не только допускать самоотносимость, но и содержать свойство «быть истинным», которое можно будет выразить средствами самого языка, а не только метаязыка. Гильберт ожидал, что эти две ситуации никогда не произойдут одновременно, если формализация арифметики будет проведена должным образом.

Однако одних лишь ожиданий было недостаточно, и теперь важнейшим становился второй этап программы Гильберта, в котором предлагалось положить конец кризису в основах математики, метаматематически доказав непротиворечивость формализованной арифметики. Только так математики будущего могли быть абсолютно уверенными в том, что больше никогда не столкнутся с противоречиями.

В этом метаматематическом доказательстве допускались не все методы: можно было использовать лишь два самых строгих, которые Гильберт назвал немецким словом finit , не слишком вдаваясь в объяснения, и которые позднее получили название финитных. Финитные методы должны были устранить все рассуждения, в которых можно было усомниться. Так, не допускались доказательства от противного, хотя этот метод использовал еще Евклид для доказательства того, что существует бесконечное множество простых чисел, а квадратный корень из двух нельзя представить в виде отношения двух натуральных чисел. Первый шаг доказательства от противного заключается в том, что мы отрицаем исходное высказывание, которое хотим доказать. Если, например, мы хотим доказать, что существует бесконечное множество простых чисел, то исходная гипотеза будет предполагать, что множество простых чисел является конечным. Затем на основе этой предпосылки нужно произвести корректные логические умозаключения, пока мы не получим абсурдное утверждение, которое будет гласить, например, что теорема арифметики, доказанная независимо от рассматриваемого утверждения, не выполняется. Все промежуточные рассуждения корректны, следовательно, единственным объяснением того, что мы пришли к абсурдному выводу, является ложность исходной гипотезы. Таким образом исходное утверждение оказывается доказанным. Часто, когда нам нужно доказать существование некоторого математического объекта, например решения некоторого уравнения, легче не найти его, а показать, что его отсутствие ведет к абсурдному заключению. Это же может произойти и в метаматематике: возможно, мы не сможем подтвердить истинность утверждения вида «формула Р доказуема», найдя явное доказательство этой формулы, однако можем предположить, что такого доказательства не существует, и в результате прийти к противоречию. Однако Гильберт не был достаточно уверен в этих методах, поэтому предпочел отказаться от них.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Представляем Вашему вниманию похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Обсуждение, отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x