Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь есть возможность читать онлайн «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том. 22. Сон разума. Математическая логика и ее парадоксы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том. 22. Сон разума. Математическая логика и ее парадоксы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том. 22. Сон разума. Математическая логика и ее парадоксы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

В простейшем варианте теории Рассела каждому математическому объекту можно присвоить число в зависимости от его сложности: элементы имеют тип 0, множества элементов — тип 1, множества множеств элементов — тип 2 и т. д. Например, если рассмотреть натуральные числа, то число 8 будет иметь тип 0, множество Р всех четных чисел и множество I всех нечетных чисел — тип 1, а множество { Р, I } будет иметь уже тип 2, так как его элементы будут иметь тип 1. После того как всем объектам присвоены типы, устанавливается нерушимое правило: для объекта типа n можно задать отношение принадлежности только к объекту типа n + 1. Выражение «число 8 четное» является корректным, так как 8 имеет тип О, Р — тип 1. Тем не менее нет смысла задаваться вопросом, является ли само множество Р четных чисел четным числом или нет, так как в этом случае речь идет об отношении принадлежности, связывающем объекты одного типа. Именно о таком отношении шла речь в описании множества всех множеств, которые не принадлежат самим себе. На языке логики говорить «принадлежать самому себе» с концептуальной точки зрения некорректно, и здесь парадокс исчезает: для данного свойства Р можно рассмотреть множество объектов, которые обладают этим свойством, однако для этого Р как минимум должно быть корректно определено.

Эрнст Цермело создатель первой аксиоматики теории множеств Одновременно с - фото 24

Эрнст Цермело, создатель первой аксиоматики теории множеств.

Одновременно с публикацией в журнале American Journal of Mathematics статьи Рассела «Математическая логика, основанная на теории типов» Эрнст Цермело(1871–1953) предложил новое решение этого парадокса, менее концептуальное, чем выдвинутое Расселом, но намного более практичное с точки зрения «рабочих от математики». Сегодня нам известно, что одна из величайших трудностей при создании любой теории — это определить предмет ее изучения. Повсюду говорят о теории информации, но что такое информация? Некоторые определяют биологию как науку о жизни, но что такое жизнь? Этими же вопросами задался Цермело при рассмотрении теории множеств. Согласно интуитивному определению Кантора, множества были не более чем совокупностями объектов, обладающих определенным свойством, однако такое определение допускало создание множества всех множеств, которые не принадлежат сами себе. Без четкого определения множества нельзя было двигаться дальше. Цермело заменил примитивное определение множества списком аксиом, в число которых включил аксиому, не позволявшую определить множество из парадокса Рассела. Начиная с этого момента множества стали определяться как объекты, удовлетворяющие списку аксиом.

Парадокс лжеца

Мы начали эту главу с анализа парадокса Рассела, однако пусть читатель не думает, что логические парадоксы являются исключительно творениями современности. Само слово «парадокс» — «неожиданный, странный» — имеет греческие корни.

В широком смысле парадокс — это абсурдное заключение, к которому ведут рассуждения, кажущиеся правильными и начинающиеся с корректных гипотез. Когда Рассел стал рассматривать множество всех множеств, которые не принадлежат сами себе, он опирался на литературную и философскую традицию. Вплоть до конца XIX века казалось невозможным, что парадоксы пересекут границу естественных наук и вторгнутся в царство чистого разума. Философы прибегали к парадоксам, чтобы подчеркнуть, что чувства обманчивы, а поэты использовали парадоксы как единственный способ донести до читателя истину о любви. Математики же страшились парадоксов, словно ящика Пандоры, открыв крышку которого, можно разрушить все в один миг. Поэтому открытие противоречий в теории множеств в то самое время, когда ученые постепенно начали признавать труд Кантора универсальной основой математики, вызвало кризис, пошатнувший самые основы науки. И на преодоление этого кризиса потребовалось несколько лет.

Один из древнейших парадоксов — это парадокс об Ахиллесе и черепахе, с помощью которого философ-досократик Зенон Элейский, ученик Парменида, хотел доказать, что движения не существует, и нанести удар по защитникам атомистической концепции пространства и времени. Зенон объяснял: фора, которую Ахиллес дает черепахе, чтобы забег проходил в равных условиях, непреодолима — когда атлет добежит до того места, где черепаха находилась вначале, она проползет чуть дальше. Когда Ахиллес преодолеет расстояние, пройденное черепахой, он вновь не сможет поравняться с ней — она успеет проползти немного вперед. Ахиллеса всегда будет отделять от черепахи некоторое расстояние, сколь бы малым оно ни было.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Представляем Вашему вниманию похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Обсуждение, отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x