Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Здесь есть возможность читать онлайн «Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следовательно, чтобы представить частицу, нам нужно шесть чисел: три для положения и три для импульса, и это означает, что частица движется по шестимерному пространству. Положение частицы можно представить математически, записав три положения, а затем три импульса. Если обозначить положение в этом абстрактном пространстве положений и импульсов через r , мы можем его выразить следующим образом:

r = ( q 1, q 2, q 3, p 1, p 2, p 3 )

Пространство положений и импульсов называют фазовым пространством. Можно сказать, что частица описывает определенную траекторию в фазовом пространстве: как положение, так и импульс меняются во времени, следуя правилам, заданным уравнениями Гамильтона. Мы можем представить траекторию в фазовом пространстве точно так же, как мы это делаем в обычной жизни: нужно только помнить, что часть этих положений на самом деле представляют собой скорость частицы.

Теперь мы можем рассмотреть проблему многих частиц. Мы знаем, что для того, чтобы определить частицу в фазовом пространстве, нам нужно шесть чисел.

Сколько чисел потребуется для двух частиц? Шесть для первой и шесть для второй, то есть 12. Итак, систему из двух частиц можно рассматривать так, будто речь идет об одной частице, движущейся в 12-мерном пространстве. Поскольку уравнения Гамильтона работают для любого числа измерений, мы должны будем всего лишь решить большее число уравнений, и в этом преимущество его математической разработки.

Из предыдущих рассуждений можно сделать вывод, что каждый раз, когда мы будем добавлять частицу, нам потребуются еще шесть чисел: три для ее положения и три для ее импульса. Следовательно, для системы из N частиц число координат, которые нам понадобятся, равно 6 N . То есть система из N частиц соответствует одной частице, движущейся по пространству из 6 N измерений. Хотя в это и не верится, но решить задачу с частицей, движущейся по пространству из 6 N измерений, легче, чем задачу с шестью измерениями для каждой частицы.

Положение частицы на фазовой диаграмме можно представить как группу чисел, разделенных запятыми:

r = ( q 1, q 2, q 3, p 1, p 2, p 3 )

где q обозначает положения, р — импульсы. Чтобы представить две частицы, нам нужно всего лишь удвоить число координат следующим образом:

r = ( q 1, q 2, q 3, q 4, q 5, q 6,p 1, p 2, p 3, p 4, p 5, p 6 )

где первые три положения соответствуют первой частице, а три следующие — второй; то же самое касается импульсов.

В целом для N частиц положение в фазовом пространстве задано рядом чисел, в котором количество каждой координаты в три раза больше, чем число частиц:

r = ( q 1, q 2, q 3… q 3N, p 1, p 2, p 3p 3N )

Этот набор чисел, разделенных запятой, говорит нам о положении точки в фазовом пространстве, поскольку это аналог точки в трех измерениях, но распространенный на произвольное число измерений. С течением времени частица меняет положение в фазовом пространстве, следуя траектории, которую мы можем вычислить, пользуясь уравнениями Гамильтона.

Траектории в фазовом пространстве

Описать траекторию частицы в фазовом пространстве — сложная задача, поскольку невозможно представить столько измерений одновременно. Но иногда мы можем ограничиться некоторыми измерениями, например горизонтальным положением и импульсом в этом же направлении.

Самый простой случай — это случай частицы, движущейся в одном измерении, то есть вдоль прямой линии. Несмотря на это ограничение, частица может перемещаться самыми разными способами: она может колебаться вперед и назад или осуществлять ускоренное движение в одном направлении.

Каждому случаю будет соответствовать своя траектория в фазовом пространстве. Изучение этих траекторий позже поможет нам понять некоторые свойства систем с большим количеством частиц, в частности газов.

Рассмотрим случай, когда частица движется по прямой с постоянной скоростью. Поскольку скорость постоянна, а импульс — это произведение массы на скорость, импульс также будет постоянным. Итак, частица будет двигаться вдоль горизонтальной оси х , сохраняя один и тот же импульс. Рисуя ее траекторию, представим себе, что частица движется, оставляя после себя след, как от сверхзвукового самолета (см. рисунок на следующей странице). След — это то, что представлено на графике: области, по которым прошла частица.

Траектория в фазовом пространстве частицы, которая движется прямолинейно на постоянной скорости, имеет следующий вид.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Представляем Вашему вниманию похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Обсуждение, отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x