Теперь обратимся к непрямому доказательству. Переформулируем предложение 20 следующим образом:
Ряд простых чисел бесконечен.
Если принять за истину обратное, то ряд простых чисел а, b, ..., m ограничен и содержит в себе их все. Но если мы повторим предыдущее доказательство, то получим число, отличное от а, b, ..., m, значит, последовательность не включает в себя все числа.
Однако Евклид не мог совершенно избежать использования актуальной бесконечности. Например, он пишет:
Книга I, определение 23. Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны не встречаются.
РИС. 6
РИС. 7
В этом утверждении прямо говорится о неограниченности, то есть подразумевается актуальная бесконечность. В той же первой книге это слово встречается еще в двух предложениях: в формулировке и в доказательстве.
Книга I, предложение 12. К данной неограниченной прямой из заданной точки, на ней не находящейся, можно провести перпендикулярную прямую (см. рисунок 6).
Книга I, предложение 22. Из трех прямых, которые равны трем данным, можно составить треугольник (см. рисунок 7).
Что заставляет Евклида бросать вызов аристотелевскому ограничению на использование бесконечности в действительности? Ответ прост. Он хочет, чтобы его утверждения были действительны в общем смысле, то есть не зависели от конкретного рисунка. В первом случае прямая, к которой мы хотим провести перпендикуляр, должна быть достаточно длинной, чтобы гарантировать, что исходная точка этого перпендикуляра будет над ней независимо от конкретной точки на рисунке. Во втором случае три стороны треугольника должны находиться на и над прямой, которая, соответственно, должна быть настолько длинной, чтобы вмещать их независимо от длин сторон, а для этого она должна быть бесконечной. Значит, в некотором смысле ограничение, установленное Аристотелем, отнимает что-то у математиков. Девять веков спустя Прокл в комментарии к первой книге «Начал» выразил свое мнение по этому поводу, анализируя предложение 12:
«Но надо исследовать теоретически, как полагается беспредельное в цельном. Ясно, что если имеется неограниченная прямая, то неограниченна и плоскость, содержащая ее, причем на деле, поскольку задача предложена. [...] Остается считать, что беспредельное существует лишь в воображении, но беспредельное не мыслится воображением. Ведь мыслить — значит придавать мыслимому форму и предел [...] Так что беспредельное относится не к мышлению, но к неопределенному для мысли; и, будучи немыслимым, несоразмерным природе и непостижимым для мысли, оно и называется беспредельным. [...] Воображение порождает его в силу своей нераздельной способности непостижимого порождения и представляет беспредельное по его немыслимости. [...] Так что когда мы полагаем в воображении данную неограниченную прямую, подобно всем прочим геометрическим фигурам, [...] не удивительно ли, как эта линия может быть беспредельной на деле и как она, будучи неопределенной, связана с определенными понятиями? С другой стороны, разум, из которого исходят рассуждения и доказательства, не пользуется беспредельным в науках, [...] беспредельное берется не ради беспредельного, но ради определенного. Ведь если данная точка не лежит на продолжении ограниченной прямой и не отстоит от этой прямой так, что никакая часть прямой не лежит под точкой, у нас не будет никакой потребности в беспредельном. В этом случае пользуются ограниченным, как не подлежащим проверке и бесспорным».
В этом тексте сделан большой шаг вперед по сравнению с предыдущими рассуждениями о бесконечном. Однако лишь благодаря исследованиям немецких ученых Рихарда Дедекинда (1831-1916) и особенно Георга Кантора (1845-1918) — всего через 50 лет после того, как Лобачевский и Бойяи расправились с пятым постулатом, — актуальная бесконечность стала частью математики. Так был положен конец философско-научной традиции, длившейся более 2000 лет.
ГЛАВА 4
Метод танграма в «Началах»
Одним из важнейших достижений китайской геометрии было изобретение танграма, позволяющего составлять различные фигуры с одинаковой площадью. Древнегреческие математики развили и обобщили эту технику, придав ей огромный дедуктивный потенциал. В частности, метод танграма позволил Евклиду доказать одну из основополагающих теорем древнегреческой геометрии, знаменитую теорему Пифагора, и решить задачи тысячелетней давности, унаследованные от месопотамских мыслителей.
Читать дальше