Иэн Стюарт - Математические головоломки профессора Стюарта

Здесь есть возможность читать онлайн «Иэн Стюарт - Математические головоломки профессора Стюарта» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки профессора Стюарта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки профессора Стюарта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки профессора Стюарта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Знак одного Часть вторая Вот одно такое решение Объяснение см в главе - фото 244

Знак одного. Часть вторая Вот одно такое решение Объяснение см в главе Знак одного Часть третья - фото 245

Вот одно такое решение:

Объяснение см в главе Знак одного Часть третья Евклидовы каракули Вы - фото 246

Объяснение см. в главе «Знак одного. Часть третья».

Евклидовы каракули

Вы могли бы сделать это вручную с использованием разложения на простые множители, если бы потратили на это день-другой. Вам пришлось бы выяснить, что

44 758 272 401 = 17 × 17 683 × 148 891;

13 164 197 765 = 5 × 17 683 × 148 891.

Затем вы могли бы сделать вывод, что НОД равен 17 683 × 148 891 = 2 632 839 553.

При использовании алгоритма Евклида весь расчет выглядит так:

(13 164 197 765; 44 758 272 401) → (13 164 197 765; 31 594 074 636) → (13 164 197 765; 18 429 876 871) → (5 265 679 106; 13 164 197 765) → (5 265 679 106; 7 898 518 659) → (2 632 839 553; 5 265 679 106) → (2 632 839 553; 2 632 839 553) → (0; 2 632 839 553).

Следовательно, НОД равен → 2 632 839 553.

123456789 раз по X

123456789 × 1 = 123456789;

123456789 × 2 = 246913578;

123456789 × 3 = 370370367;

123456789 × 4 = 493827156;

123456789 × 5 = 617283945;

123456789 × 6 = 740740734;

123456789 × 7 = 846197523;

123456789 × 8 = 987654321;

123456789 × 9 = 1111111101.

В этих числах присутствуют все девять ненулевых цифр в разном порядке, за исключением тех случаев, когда мы умножаем на число, кратное 3 (то есть на 3, 6 и 9).

Знак одного. Часть третья картинка 247

Поскольку

62 = 7 × 9–1 = 7/0,(1) – 1,

мы можем воспользоваться представлением 7 через две единицы, чтобы получить 62 из четырех единиц.

Долгое время Сомс и Ватсап никак не могли выразить 138 через четыре единицы, но потом, воспользовавшись озарением Ватсапа про квадратные корни и факториалы и применив системный подход, они в конце концов выяснили, что 138 можно получить с использованием всего лишь трех единиц. Стартовой позицией, опять же, является семерка, выраженная через две единицы, и тогда

И наконец 138 4601 что кстати говоря представляет собой хитрый - фото 248

И наконец,

138 = 46/√0,(1),

что, кстати говоря, представляет собой хитрый способ умножения на 3 с использованием всего одной дополнительной единицы.

Бросание монетки – несправедливый жребий

Persi Diaconis, Susan Holmes, and Richard Montgomery, Dynamical bias in the coin toss, SIAM Review 49 (2007) 211–223.

То же в популярном изложении: Persi Diaconis, Susan Holmes, and Richard Montgomery, The fifty-one percent solution, What's Happening in the Mathematical Sciences 7 (2009) 33–45.

Аналогичные эффекты возникают при бросании костей – не только обычных кубиков, но и любых правильных многогранников. См.: J. Strzalko, J. Grabski, A. Stefanski, and T. Kapitaniak, Can the dice be fair by dynamics? International Journal of Bifurcation and Chaos 20 No. 4 (April 2010) 1175–1184.

Исключение невозможного картинка 249

– Ваше упущение, – сказал Сомс, – состояло в том, что вы не заметили, что двигаться могут не только стаканы, но и налитое в них вино. Я просто возьму второй и четвертый стаканы и перелью их содержимое в седьмой и девятый.

Сила мидий

Monique de Jager, Franz J. Weissing, Peter M. J. Herman, Bart A. Nolet, and Johan van de Koppel. Le×vy walks evolve through interaction between movement and environmental complexity, Science 332 (4 June 2011) 1551–1553.

Доказательство шарообразности Земли

Мы видели, что при вычислении средних скоростей на фиксированном расстоянии нам следует использовать среднее гармоническое, а не среднее арифметическое значение. Гармоническое среднее возникает также при оценке расстояния между двумя аэропортами, если учитывать силу ветра, – по аналогичной, с небольшими отличиями, причине. Посмотрим на простую модель. Будем считать, что скорость самолета относительно воздуха равна c , летит он по прямой, а ветер дует строго вдоль этой прямой со скоростью w . Считаем, что c и w постоянны. Тогда a = c – w, b = c + w . Мы хотим оценить d на основании времен r и s . Чтобы избавиться от w , мы выразим a и b и получим a = d/r и b = d/s . Таким образом,

c – w = d/r, c+w = d/s .

Сложив, получим 2 c = d (1 /r + 1 /s ). Тогда c = d (1 /r + + 1 /s )/2. Если бы ветра не было, полет в одну сторону занял бы время t , где d = ct . Следовательно,

t = d/c = d /[ d (1/ r + 1/ s )/2] = 1/[(1/ r + 1/ s )/2],

это и есть гармоническое среднее между r и s .

Короче говоря: если мы говорим о самолеточасах, то из этой простой модели воздействия ветра видно, что пользоваться следует гармоническим средним времени перелета в двух направлениях.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки профессора Стюарта»

Представляем Вашему вниманию похожие книги на «Математические головоломки профессора Стюарта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки профессора Стюарта»

Обсуждение, отзывы о книге «Математические головоломки профессора Стюарта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x