Иэн Стюарт - Математические головоломки профессора Стюарта

Здесь есть возможность читать онлайн «Иэн Стюарт - Математические головоломки профессора Стюарта» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки профессора Стюарта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки профессора Стюарта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки профессора Стюарта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Четыре псевдоку без указаний

Эти головоломки также исходят от Джерарда Баттерса Фредерика Хенле Джеймса - фото 241

Эти головоломки также исходят от Джерарда Баттерса, Фредерика Хенле, Джеймса Хенле и Колина МакГоги. См.: Gerard Butters, Frederick Henle, James Henle, and Colleen McGaughey. Creating clueless puzzles, The Mathematical Intelligencer 33 No. 3 (Fall 2011) 102–105.

Загадка похищенных бумаг картинка 242

– Вор – Волверстон, – объявил Сомс.

– Ты уверен, Хемлок? От твоей правоты многое зависит.

– Никаких сомнений быть не может, Спайкрафт. Вот их заявления:

Арбатнот: Это сделал Берлингтон.

Берлингтон: Арбатнот лжет.

Волверстон: Это не я.

Гамильтон: Это сделал Арбатнот.

Мы знаем, что кто-то один из этих людей говорит правду, а остальные трое лгут. Существует четыре возможных варианта. Рассмотрим их по очереди.

Если только Арбатнот говорит правду, то из его слов нам становится известно, что виновен Берлингтон. Однако в этом случае Волверстон лжет, следовательно, виновен именно Волверстон. Это логическое противоречие, делаем вывод о том, что Арбатнот не говорит правду.

– Если только Берлингтон говорит правду, то…

– Волверстон лжет! – воскликнул я. – Так что виновен Волверстон!

Сомс сердито взглянул на меня – ведь я сорвал его эффектное выступление.

– Это так, Ватсап, и остальные заявления этому не противоречат. Так что мы уже знаем, что вор – Волверстон. Однако имеет смысл проверить и остальные два варианта, чтобы избежать даже малейшей возможности ошибки.

– Все абсолютно ясно, дружище, – сказал я.

Сомс достал трубку, но не стал ее зажигать.

– Если только Волверстон говорит правду, то заявление Берлингтона ложно, следовательно, Арбатнот говорит правду. Снова противоречие, поскольку известно, что он лжет. Если только Гамильтон говорит правду, возникает это же противоречие. Поэтому единственный возможный вариант – тот, где правду говорит только Берлингтон, и тогда вор – Волверстон. Как Ватсап проницательно заметил.

– Благодарю вас, джентльмены, – сказал Спайкрафт. – Я знал, что могу на вас положиться.

По его жесту в комнату тенью проскользнула какая-то фигура. Короткий разговор шепотом, и человек вновь исчез.

– В жилище доктора будет немедленно проведен обыск, – сказал Спайкрафт. – Я уверен, что документ будет найден.

– Значит, мы спасли империю! – воскликнул я.

– До следующего раза, когда кто-нибудь оставит секретные документы на сиденье какого-нибудь кэба, – сухо заметил Сомс.

По пути домой я прошептал на ухо своему спутнику:

– Сомс, если Спайкрафт – специалист по простым числам, то что он делает в контрразведке? Ведь здесь не может быть никакой связи, правда?

Он внимательно посмотрел на меня и покачал головой. Что имелось в виду – отсутствие связи, о которой я говорил, или предупреждение и совет не развивать эту тему, – мне неизвестно.

Еще одна любопытная числовая закономерность

123456 × 8 + 6 = 987654;

1234567 × 8 + 7 = 9876543;

12345678 × 8 + 8 = 98765432;

123456789 × 8 + 9 = 987654321.

Здесь не до конца ясно, что «должно» идти следующим: может быть,

234567890 × 8 + 10,

что равно 9876543130, так что закономерность на этом прекращается. Но, может быть, мне следовало взять (123456789) × 10 + 10 = 12345678900. Тогда

12345678900 × 8 + 10 = 9876543210.

Далее

(12345678900) × 10 + 11 = 123456789011,

что приводит нас к

12345689011 × 8 + 11 = 98765432099

и т. д. Если поэкспериментировать, можно поймать другую закономерность, которая продолжается до бесконечности.

Промежутки между простыми числами

Гипотеза Эллиота – Халберстама [37] Peter Elliott and Heini Halberstam, A conjecture in prime number theory, Symposia Mathematica 4 (1968) 59–72. носит очень специальный характер. Пусть π ( x ) – число простых чисел, меньших или равных x . Для любого положительного целого q и a , не имеющего с q общих делителей, за исключением 1, пусть π ( x; q, a ) – число простых чисел, меньших или равных x и равных a (mod q ). Это приблизительно равно π( x ) / φ( q ), где φ – это пси-функция Эйлера, число целых чисел от 1 до q – 1, не имеющих с q общих делителей. Рассмотрим максимальную возможную ошибку:

Гипотеза Эллиота Халберстама говорит о том насколько велика эта ошибка - фото 243

Гипотеза Эллиота – Халберстама говорит о том, насколько велика эта ошибка: гипотеза утверждает, что для любых θ < 1 и A> 0 существует постоянная C> 0 такая, что

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки профессора Стюарта»

Представляем Вашему вниманию похожие книги на «Математические головоломки профессора Стюарта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки профессора Стюарта»

Обсуждение, отзывы о книге «Математические головоломки профессора Стюарта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x