Иэн Стюарт - Математические головоломки профессора Стюарта

Здесь есть возможность читать онлайн «Иэн Стюарт - Математические головоломки профессора Стюарта» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки профессора Стюарта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки профессора Стюарта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки профессора Стюарта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Математические головоломки профессора Стюарта - изображение 259

Я утверждаю, что для любых x j мы всегда имеем b>a , если только все x j не равны, в каковом случае b = a . Это следует из стандартного неравенства, связывающего среднее с тем, что инженеры называют «среднеквадратичным значением» (это корень квадратный из среднего значения квадратов):

причем равенство достигается только при равенстве всех x j Возведя в квадрат - фото 260

причем равенство достигается только при равенстве всех x j . Возведя в квадрат и сгруппировав, получим a за исключением случая равенства всех x j , что и требовалось. Дополнительную информацию можно найти на сайте

http://www.artofproblemsolving.com/wiki/index.php?title=Root-Mean_Square-Arithmetic_Mean-Geometric_Mean-Harmonic_mean_Inequality

Приключение шестерых гостей картинка 261

Замечание Сомса – пример применения теории Рамсея – области комбинаторики, названной в честь Фрэнка Рамсея, доказавшего аналогичную, но более общую теорему в 1930 г. Его брат Майкл стал архиепископом Кентерберийским. Подойдем к нашему вопросу с осторожностью. Предположим, что некоторое число людей сидит за столом, причем каждый человек связан с другими либо ножом, либо вилкой. Выберем два произвольных числа f и k . Тогда существует некоторое число R , зависящее от f и k , такое, что если за столом присутствует по крайней мере R человек, то либо f из них соединены вилками, либо k – ножами.

Наименьшее такое R обозначается как R ( f, k ) и называется числом Рамсея. Из доказательства Сомса видно, что R (3,3) = 6. Числа Рамсея вычисляются с необычайным трудом, за исключением нескольких простых случаев. Известно, к примеру, что R (5,5) лежит в промежутке от 43 до 49, но его точное значение остается загадкой.

Рамсей доказал более общую теорему, в которой количество типов соединения (ножи, вилка, что угодно – чаще всего используются цвета, но Сомс использует то, что оказывается под рукой) может определяться любым конечным числом. Единственное известное нетривиальное число Рамсея для больше чем двух типов соединения – это R (3,3,3), равное 17.

Существуют бесчисленные обобщения этой идеи. Конкретное число, о котором идет речь, известно лишь в нескольких, очень немногочисленных, случаях. Вот статья, с которой все началось: F. P. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society 30 (1930) 264–286. Как можно предположить по названию, автор думал о логике, а не о комбинаторике.

Число Грэма

R. L. Graham and B. L. Rothschild, Ramsey theory, Studies in Combinatorics (ed. G.-C. Rota) Mathematical Association of America 17 (1978) 80–99.

Дело водителя с уровнем выше среднего картинка 262

В 1981 г. О. Свенсон опросил 161 шведского и американского студента, попросив каждого из них оценить свое мастерство и безопасность вождения по отношению к остальным участникам опроса. В отношении мастерства 69 % шведов оценили себя как выше среднего уровня; в отношении безопасности то же сделали 77 %. Для американских студентов цифры составили 93 % по мастерству и 88 % по безопасности. Мне довелось сдать два американских экзамена по вождению, один из которых проводился вообще без автомобиля, и я понимаю, почему американцы до такой степени преувеличивают свои способности. См.: O. Svenson, Are we all less risky and more skillful than our fellow drivers? Acta Psychologica 47 (1981) 143–148.

Тот же эффект наблюдается при оценке многих других качеств – популярности, здоровья, памяти, профессиональной квалификации, даже счастья в личной жизни. Не особенно удивительно: это один из способов поддержания самоуважения и уверенности в себе. А низкое самоуважение может быть признаком психологической неадекватности, поэтому, чтобы быть счастливыми и здоровыми, мы развили у себя в процессе эволюции способность к завышенной оценке собственного счастья и здоровья.

Не знаю, как вы, а я великолепно себя чувствую.

Ограбление в Баффлхэме картинка 263

– Нужные нам числа – это 4 и 13, – сказал Сомс.

– Поразительно, просто поразительно. Я…

– Вы знакомы с моими методами, Ватсап.

– Тем не менее мне кажется замечательным, что вы можете вывести ответ из таких неопределенных разговоров.

– Хм. Посмотрим. Суть дела, Ватсап, состоит в том, что каждое утверждение, которое мы делаем, добавляет дополнительную информацию к тому, что знаем мы оба . И знаем , что оба знаем, и т. д. Предположим, что произведение двух нужных нам чисел равно p , а сумма равна s . Первоначально вы знаете p , а я знаю s . Мы оба знаем, что второй из нас знает то, что знает, но не знаем конкретного значения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки профессора Стюарта»

Представляем Вашему вниманию похожие книги на «Математические головоломки профессора Стюарта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки профессора Стюарта»

Обсуждение, отзывы о книге «Математические головоломки профессора Стюарта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x