Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма

Здесь есть возможность читать онлайн «Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Математика, Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Чудеса арифметики от Пьера Симона де Ферма: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Чудеса арифметики от Пьера Симона де Ферма»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В данной книге показано, как знаменитая научная проблема под названием «Великая теорема Ферма» позволяет раскрывать несостоятельность и недееспособность науки, в которой арифметика по разным историческим причинам лишилась статуса первоосновы всех знаний. Необычный жанр книги назван в ней самой "Научный блокбастер", что означает сочетание остросюжетного повествования в стиле художественной прозы с отдельными фрагментами чисто научного содержания.

Чудеса арифметики от Пьера Симона де Ферма — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Чудеса арифметики от Пьера Симона де Ферма», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С другой стороны, даже заблуждаясь в этом вопросе, т.е. считая, что эта теорема была доказана ещё Евклидом, как наука могла её игнорировать, используя «комплексные числа» и обрекая себя тем самым на разрушение изнутри? И наконец, как же можно объяснить, что эта очень простая, по сути, теорема, на которой держится вся наука, вообще не преподаётся в средней школе?

Что же касается метода спуска, то данное доказательство является одним из самых простых примеров его применения, что встречается довольно редко из-за широкой универсальности этого метода. Гораздо чаще для применения метода спуска требуется большое напряжение мысли, чтобы подвести под него логическую цепь рассуждений. С этой точки зрения могут быть поучительны и некоторые другие особые примеры решения задач этим методом.

3.4. Метод спуска

3.4.1. Немножко «остроты ума» для очень трудной задачи

Мы рассмотрим теперь ещё один пример задачи из письма-завещания Ферма, которая сформулирована там следующим образом:

Существует только один целый квадрат, который, увеличенный на два, даёт куб, этот квадрат равен 25.

Когда по предложению Ферма её попытался решить лучший английский математик того времени Джон Валлис (John Wallis), то он был очень сильно раздосадован и вынужден признать, что не может это сделать. Более двух веков считалось, что решение этой задачи получил Леонард Эйлер, но его доказательство основано на применении «комплексных чисел», а мы-то знаем, что это вовсе не числа, т.к. они не подчиняются основной теореме арифметики. И только в конце ХХ века Андрé Вейль (André Weil) с помощью метода треугольников Ферма, всё-таки сумел получить доказательство [17]. Это был большой прогресс, т.к. здесь использован чисто арифметический метод, однако применительно к данной задаче он явно был притянут за уши. Мог ли Ферма решить эту задачу проще? Ответ на этот вопрос мы также извлечём из тайника, что позволит нам раскрыть и эту тайну науки в виде следующей реконструкции. Итак, мы имеем уравнение p 3=q 2+2 с очевидным решением p=3, q=5. Для доказательства утверждения Ферма, предположим, что существует ещё одно решение

P>p=3, Q>q=5, которое удовлетворяет уравнению

P 3=Q 2+2 (1)

Поскольку очевидно, что Q>P, то пусть

Q=P+δ (2)

Подставляя (2) в (1), получим:

P 2(P–1)–2δP–δ 2=2 (3)

Здесь нам потребуется самая малость «остроты ума», чтобы заметить, что δ>P, иначе уравнение (3) невыполнимо. Действительно, если сделать пробу δ=P, то слева (3) будет:

P 2(P–4)>2, что не подходит, следовательно, должно существовать число δ 1=δ–P. Тогда, подставляя δ=P+δ 1в (3), получим

P 2(P–4)–4δ 1P–δ 1 2= 2 (4)

Теперь-то мы непременно заметим, что δ 1>P, иначе по той же логике, что и выше, слева (4) мы получим:

P 2(P–9)>2, что опять-таки не подходит, тогда, должно существовать число δ 2=δ 1–P, и подставляя δ 1=P+δ 2в (4), получим:

P 2(P–9)–6δ 2P–δ 2 2=2 (5)

Вот здесь-то уже можно совсем не сомневаться, что так будет продолжаться без конца и края. Действительно, путем проб δ i=P каждый раз мы получаем P 2(P−K i)>2. Каким бы ни было число K i, это уравнение невыполнимо, поскольку если K i

3, то P 2(P−K i)>2, а если K i≥P, то такой вариант исключается, т.к. тогда P 2(P−K i)≤0. Продолжать так бесконечно явно бессмысленно, следовательно, наше начальное предположение о существовании других решений P>3, Q>5 неверно и эта теорема Ферма доказана.

В часто упоминаемой нами книге Сингха эта задача приводится как пример «головоломок», которые «придумывал» Ферма. Но теперь выясняется, что универсальный метод спуска и простой приём с пробами приравненных чисел делают эту задачу одним из очень эффективных примеров для обучения в школе. Имея это доказательство, школьники без труда смогут доказать ещё одну теорему из письма-завещания Ферма, которую в своё время мог решить только такой знаменитый на весь мир учёный, как Леонард Эйлер:

Существуют только два целочисленных квадрата, которые, увеличенные на 4 , дают кубы, эти квадраты будут 4 и 121.

Иными словами, уравнение p 3=q 2+4 имеет только два решения в целых числах.

3.4.2 Золотая теорема Ферма

Напомним, что в известном нам письме-завещании Ферма, (п. 3.3.1), изложен только частный случай этой теоремы для квадратов. Но и этот упрощённый вариант задачи оказался не по силам не только представителям высшей французской аристократии Баше и Декарту, но даже и королевско-императорскому математику Эйлеру.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Чудеса арифметики от Пьера Симона де Ферма»

Представляем Вашему вниманию похожие книги на «Чудеса арифметики от Пьера Симона де Ферма» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма»

Обсуждение, отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x