Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма

Здесь есть возможность читать онлайн «Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Математика, Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Чудеса арифметики от Пьера Симона де Ферма: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Чудеса арифметики от Пьера Симона де Ферма»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В данной книге показано, как знаменитая научная проблема под названием «Великая теорема Ферма» позволяет раскрывать несостоятельность и недееспособность науки, в которой арифметика по разным историческим причинам лишилась статуса первоосновы всех знаний. Необычный жанр книги назван в ней самой "Научный блокбастер", что означает сочетание остросюжетного повествования в стиле художественной прозы с отдельными фрагментами чисто научного содержания.

Чудеса арифметики от Пьера Симона де Ферма — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Чудеса арифметики от Пьера Симона де Ферма», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эту теорему Ферма своим способом впервые доказал Эйлер в 1760 г. [38], а в рамках очень сложной «Арифметики вычетов» Гаусса эта теорема доказывается в одном абзаце [23]. Однако повторить доказательство самого Ферма никому так и не удалось. «… 3. Имеется бесконечно много вопросов такого рода, но существуют и другие, которые требуют новых принципов для применения к ним метода спуска… Таков следующий вопрос, который Баше, как он сознаётся в своём комментарии к Диофанту, не смог доказать. По этому поводу Декарт в своих письмах сделал такое же заявление, признаваясь, что считает его настолько трудным, что не видит никакого пути для его решения. Каждое число есть квадрат или состоит из двух, трех или четырех квадратов ».

Ещё раньше 22 года назад в октябре 1636 года письмом к Мерсенну Ферма сообщал о той же задаче как о своём открытии, но в общем виде, т.е. для любых многоугольных чисел (напр., треугольников, квадратов, пятиугольников и т.д.). Впоследствии он даже назвал эту теорему золотой. Следовательно, метод спуска был открыт им в самом начале его исследований по арифметике. К моменту написания письма-завещания Ферма уже знал от Каркави, что вопрос о создании Французской Академии наук практически решён и ему нужно лишь дождаться окончания строительства здания, чтобы сбылась мечта всей его жизни стать профессиональным учёным, причём в ранге академика. Гюйгенсу было поручено собрать материалы первых академических изданий. Для них Ферма предлагал открытый им метод спуска и решение на его основе конкретных арифметических задач.

Однако о том, что эти задачи очень трудны, мало кто знал и Ферма было понятно, что опубликуй он их решения, то они вообще не произведут никакого впечатления. У него уже был такой опыт и теперь он приготовил настоящий сюрприз. Для тех, кто не оценит по достоинству его решения, он предложит решить ещё одну задачу. Это основная теорема арифметики, имеющая особую значимость для всей науки, поскольку без неё вся теория теряет силу. Ферма обнаружил в доказательстве Евклида ошибку и пришёл к выводу, что доказать эту теорему без применения метода спуска чрезвычайно трудно, если вообще возможно. Однако теперь-то мы можем раскрыть и эту тайну с помощью наших возможностей заглянуть в тайник Ферма с «еретическими письменами» и вернуть его утраченное доказательство науке в виде представленной ниже реконструкции.

3.3.2. Доказательство Ферма

Итак, чтобы доказать основную теорему арифметики, предположим, что существуют равные натуральные числа A, B, состоящие из разных простых множителей:

A=B где A=pp 1p 2…p n; B=хx 1x 2…x m; n≥1; m≥1 (1)

В силу равенства чисел A, B каждое из них делится на любое из простых чисел p iили x i. Каждое из чисел A, B может состоять из любого набора простых множителей, в т. ч. и одинаковых, но при этом среди них нет ни одного p iравного x i, иначе в (1) они были бы сокращены. Теперь (1) можно представить, как: pQ=xY где p, x – минимальные простые числа среди p i, x i; Q=A/p; Y=B/x (2)

Поскольку множители p, x разные, условимся, что p>x; x=p–δ 1, тогда pQ=(p–δ 1)(Q+δ 2) где δ 1=p–x; δ 2=Y–Q (3)

Откуда следует: Qδ 1=(p – δ 1)δ 2или Qδ 1=xδ 2(4)

Уравнение (4) – это прямое следствие предположения (1). Правая часть этого уравнения содержит в явном виде простой множитель x. Однако в левой части уравнения (4) число δ 1не может содержать множитель x, т.к. δ 1=p–x не делится на x из-за того, что p – простое число. Число Q также не содержит множитель x, т.к. по нашему предположению оно состоит из множителей p i, среди которых нет ни одного равного x. Таким образом, справа в уравнения (4) есть множитель x, а слева его нет. Тем не менее нет оснований утверждать, что это невозможно, т.к. мы изначально допускаем существование равных чисел с разными простыми множителями. Тогда остаётся лишь признать, что если существуют натуральные числа A=B, составленные из разных простых множителей, то необходимо, чтобы в этом случае существовали и другие натуральные числа A 1= Qδ 1и B 1=xδ 2; также равные между собой и составленные из разных простых множителей. Если учитывать, что δ 1=(p–x)

2=(Y–Q)1= B 1, где A 11

Теперь мы получаем ситуацию, аналогичную ситуации с числами A, B, только с меньшими числами A 1, B 1. Анализируя затем (5) изложенным выше способом, мы будем вынуждены признать, что должны существовать числа A 2=B 2, где A 2

1; B 21(6)

Следуя этим путем, мы неизбежно придем к случаю, когда существование чисел

A k=B k, где A kk-1; B kk-1как прямое следствие предположения (1) станет невозможно. Следовательно, наше начальное предположение (1) также невозможно и таким образом теорема доказана 41. Глядя на это очень простое и даже элементарное доказательство методом спуска, естественно, возникают недоуменные вопросы, как же это могло так случиться, что в течение многих веков наука не только это доказательство не получила, но и была в полном неведении, что у неё нет никакого доказательства вообще?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Чудеса арифметики от Пьера Симона де Ферма»

Представляем Вашему вниманию похожие книги на «Чудеса арифметики от Пьера Симона де Ферма» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма»

Обсуждение, отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x