Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма

Здесь есть возможность читать онлайн «Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Математика, Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Чудеса арифметики от Пьера Симона де Ферма: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Чудеса арифметики от Пьера Симона де Ферма»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В данной книге показано, как знаменитая научная проблема под названием «Великая теорема Ферма» позволяет раскрывать несостоятельность и недееспособность науки, в которой арифметика по разным историческим причинам лишилась статуса первоосновы всех знаний. Необычный жанр книги назван в ней самой "Научный блокбастер", что означает сочетание остросюжетного повествования в стиле художественной прозы с отдельными фрагментами чисто научного содержания.

Чудеса арифметики от Пьера Симона де Ферма — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Чудеса арифметики от Пьера Симона де Ферма», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

60

Учитывая, что с−a=b−2m, выражение в квадратных скобках уравнения (8) можно преобразовать следующим образом: (c ++ b) n− (a ++ 2m) n= с n-1− a n-1+ c n-2b − a n-22m + c n-3b 2− a n-3(2m) 2+ … + b n-1− (2m) n-1; с n-1− a n-1= (с−a)(c++a) n-1; c n-2b − a n-22m = 2m(c n-2− a n-2) + c n-2(b − 2m) = (c − a)[2m(c ++ a) n-2+ c n-2]; c n-3b 2− a n-3(2m) 2= (2m) 2(c n-3− a n-3) + c n-3(b 2− 4m 2) = (c − a)[4m 2(c++a) n-3+ c n-3(b + 2m)]; b n-1− (2m) n-1= (b − 2m)(b ++ 2m) n-1= (c − a)(b ++ 2m) n-1; Все разности чисел, кроме первой и последней, можно задать в общем виде: c xb y− a x(2m) y= (2m) y(c x−a x) + c x[b y−(2m) y] = (c − a)(c ++ a) x(2m) y+ (b − 2m)(b ++ 2m) yc x= (c−a)[(c++a) x(2m) y+(b++2m) yc x]; И отсюда понятно, каким образом число (с − a) выносится за скобки. Аналогично можно вынести за скобки множитель a+b=c+2m. Но это возможно только для нечётных степеней n. В этом случае уравнение (10) будет иметь вид A iB iC iD i= (2m) n, где A i= c−b = a −2m; B i= c − a = b − 2m; C i= a + b = c + 2m; D i– полином степени n − 3 [30].

61

Уравнение (10) может существовать только если выполняется (1), т.е. {a n+b n−c n}=0, поэтому любой вариант с отсутствием решений приводит к исчезновению этого уравнения-призрака. И в частности, не проходит «опровержение» о том, что неправомерно искать решение при любых комбинациях множителей, поскольку A iB i= 2m 2может противоречить E i= 2 n-1m n-2, когда приравнивание E iк целому числу не всегда даёт целые решения из-за того, что полином степени n−2, (остающийся после выноса за скобки множителя c−a), может в этом случае не состоять только из целых чисел. Однако этот довод не опровергает сделанный вывод, а наоборот усиливает его ещё одним противоречием, т.к. E iсостоит из тех же чисел, (a, b, c, m) что и A i,B i,где нецелых чисел быть не может.

62

В данном доказательстве было вполне логично указать такую комбинацию множителей в уравнении (10), из которой следуют числа Пифагора. Однако есть и множество других возможностей получить такой же вывод из этого уравнения. Например, в [30] дан целый десяток различных вариантов и при желании можно найти ещё больше. Легко показать, что уравнение Ферма (1) невыполнимо также и для дробных рациональных чисел, т.к. в этом случае их можно привести к общему знаменателю, который затем сократить. Тогда получится случай решения уравнения Ферма в целых числах, но уже доказано, что это невозможно. В этом доказательстве ВТФ задействованы новые открытия, не известные сегодняшней науке – это метод ключевой формулы (2), новый способ решения уравнения Пифагора (4), (5), (6), и формула Бинома Ферма (7) … да, конечно же, ещё и волшебные числа из п. 4.4!!!

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Чудеса арифметики от Пьера Симона де Ферма»

Представляем Вашему вниманию похожие книги на «Чудеса арифметики от Пьера Симона де Ферма» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма»

Обсуждение, отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x