Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма

Здесь есть возможность читать онлайн «Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Математика, Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Чудеса арифметики от Пьера Симона де Ферма: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Чудеса арифметики от Пьера Симона де Ферма»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В данной книге показано, как знаменитая научная проблема под названием «Великая теорема Ферма» позволяет раскрывать несостоятельность и недееспособность науки, в которой арифметика по разным историческим причинам лишилась статуса первоосновы всех знаний. Необычный жанр книги назван в ней самой "Научный блокбастер", что означает сочетание остросюжетного повествования в стиле художественной прозы с отдельными фрагментами чисто научного содержания.

Чудеса арифметики от Пьера Симона де Ферма — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Чудеса арифметики от Пьера Симона де Ферма», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Далее разъясняется: «Пусть число A будет наименьшим измеряемым первыми числами B, C, D; я утверждаю, что A не измерится никаким иным первым числом, кроме B, C, D». Доказательство этой теоремы только на первый взгляд выглядит убедительно, и эта видимость основательности усиливается цепочкой ссылок: IX-14 → VII-30 → VII-20 → VII-4 → VII-2. Однако здесь допущена элементарная и даже очень грубая ошибка. Её суть в следующем:

Пусть A=BCD, где числа B, C, D простые, (первые). Если допустить теперь существование простого E, отличного от B, C, D, и такого, что A=EI, то делается вывод, что в этом случае A=BCD не делится на E. Это последнее утверждение неверно, поскольку теорема ведь ещё не доказана и не исключено, например, BCD=EFGH, где E, F, G, H простые числа, отличные от B, C, D. Тогда A:E=BCD:E=EFGH:E=FGH, т.е. в этом случае станет возможно, что число A может делиться на число E и тогда доказательство теоремы опирается на аргумент, который ещё не доказан, поэтому конечный вывод неверный. Та же ошибка может попасть и в другие теоремы, использующие разложение целых чисел на простые множители. Видимо, из-за архаичной лексики «Начал Евклида», даже такой великий учёный как Эйлер не обратил должного внимания на эту теорему, иначе вряд ли бы он стал использовать на практике «комплексные числа», которые ей не подчиняются.

Такая же история произошла и с Гауссом, который, также не заметил этой теоремы в «Началах» Евклида, но всё же сформулировал её, когда в ней возникла необходимость. Формулировка и доказательство Гаусса следующие:

«Каждое составное число может быть разложено на простые сомножители только одним единственным образом .

Если мы предположим, что составное число A, равное a αb βc γ…, где a,b,c,… обозначают различные простые числа, разложимо на простые сомножители ещё и другим способом, то прежде всего ясно, что в этой второй системе сомножителей не может встречаться других простых чисел, кроме a,b,c,…, т.к. составленное из этих последних число A не может делиться ни на какое другое простое число » [11, 25].

Это почти точное повторение ошибочной аргументации в доказательстве Евклида. Но если эта теорема не доказана, то всё построенное на натуральных числах основание науки рушится, а все следствия из определений и аксиом теряют свою значимость. И как же теперь быть? Ведь если с доказательством теоремы не справились такие гиганты науки как Евклид и Гаусс, то куда уж нам-то грешным. Но выход всё-таки есть, и он указан в одном удивительном документе, называемом «Письмо-завещание Ферма».

Это письмо было отправлено Ферма в августе 1659 г. его давнему другу и бывшему коллеге по парламенту Тулузы королевскому библиотекарю Пьеру де Каркави, от которого его получил известный французский учёный Христиан Гюйгенс (Christiaan Huygens), первым возглавивший созданную в 1666 г. Французскую Академию Наук. Здесь мы приведём только отдельные выдержки из этого existписьма Ферма, которые нас особенно интересуют [9, 36].

« Сводка открытий в науке о числах. …

1. Поскольку обычные методы, изложенные в Книгах, не достаточны для доказательства очень трудных предложений, я нашёл, наконец, для их решения совершенно особый путь. Я назвал этот способ доказательства бесконечным или неопределённым спуском. Сначала я пользовался им только для доказательства отрицательных предложений, как, например:что не существует прямоугольного треугольника в числах, площадь которого была бы квадратом ». Подробности см. Приложение II.

Наукой о числах названа арифметика и дальнейшее содержание письма не оставляет в этом никаких сомнений. Именно с арифметики начинаются не только математические, но и все другие науки. А в самой арифметике метод спуска один из основополагающих. Далее даются примеры задач, решение которых без этого метода не только очень затруднено, но иногда и вообще вряд ли возможно. Здесь мы назовём только некоторые из этих примеров.

« 2. Долгое время я не мог приложить мой метод к утвердительным предложениям, потому что обходы и окольные пути для достижения цели гораздо более трудны, чем те, которые послужили мне для отрицательных предложений. Поэтому, когда мне надо было доказать, что каждое простое число, которое превосходит на 1 кратное четырех, состоит из <���суммы> двух квадратов, я был в сильнейшем затруднении. Но, наконец, многократно повторенные размышления пролили свет, которого мне не доставало, и утвердительное предложение стало возможным трактовать моим методом с помощью некоторых новых принципов, которые необходимо было к ним присоединить. Этот прогресс в моих рассуждениях для случая утвердительных предложений таков: если некоторое простое число, которое превосходит на единицу кратное 4-х, не состоит из двух квадратов, то имеется простое число той же природы, меньшее данного, а затем третье, ещё меньшее, и т.д. спускаясь до тех пор, пока не придёте к числу 5, которое является наименьшим из всех чисел этой природы. Оно, следовательно, не может состоять из двух квадратов, что, однако имеет место. Отсюда можно заключить путём доказательства от противного, что все простые числа этой природы должны состоять из двух квадратов ».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Чудеса арифметики от Пьера Симона де Ферма»

Представляем Вашему вниманию похожие книги на «Чудеса арифметики от Пьера Симона де Ферма» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма»

Обсуждение, отзывы о книге «Чудеса арифметики от Пьера Симона де Ферма» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x