Учёные, которые задавались вопросом о сущности числа сразу упирались в эту проблему и приходили к выводу, что общего определения понятия числа просто не существует. Но не таков был Пьер Ферма, который подошёл к этой проблеме с другой стороны. Он задался вопросом: «Откуда вообще появляется понятие числа?», и пришёл к выводу о том, что его предшественниками были понятия «больше», «меньше» и «равно» как результаты сравнений некоторых свойств, присущих разным предметам [30].
Если разные предметы сравниваются по некоторому свойству с одним и тем же предметом, то появляется такое понятие как измерение и тогда может быть через измерение и следует выявлять сущность числа? Однако это не так. По отношению к измерению число первично, т.е. если нет чисел, то не может быть и никаких измерений. Понимание сущности числа становится возможно только после установления того, что число неразрывно связано понятием «функция». А вот это понятие определить совсем не сложно:
Функция – это заданная последовательность действий с её аргументами .
В свою очередь, действия не могут существовать сами по себе, т.е. в состав функции, кроме них должны входить компоненты, с которыми эти действия выполняются. Эти компоненты называются «аргументы функции». Отсюда следует и общее определение понятия числа:
Число есть объективная реальность, существующая как счётная величина, которая состоит из аргументов функции и действий между ними.
Например, a + b + c = d, где a, b, c – аргументы, d – счётная величина или числовое значение 32.
Чтобы понять, какая пропасть отделяет Пьера Ферма от остального учёного мира, достаточно сравнить это простое определение с тем пониманием, которое есть в сегодняшней науке [13, 29]. А вот понимание, явно присутствующее в научном творчестве Ферма, позволило ему ещё в те далёкие времена достигать результатов, которые для других учёных оказывались либо сопряжены с чрезвычайными трудностями, либо вообще недостижимы.
Можно дать и более широкое определение понятия числа, а именно:
Число есть разновидность данных, представляемых в виде функций .
Это расширенное определение понятия числа выходит за рамки математики, поэтому его можно назвать общим, а предыдущее определение – математическим. Во втором определении нужно ещё разъяснить сущность понятия «данные», однако для науки этот вопрос не менее трудный, чем вопрос о сущности понятия числа 33.
Рису. 30. Пифагор
Из общего определения понятия числа следует истинность знаменитого утверждения Пифагора о том, что всё сущее может отображаться как число . Действительно, если число – это особая разновидность информации, то вот это очень смелое по тем временам утверждение не только обосновано, но и подтверждено современной практикой его применения на компьютерах, где реализуются три известных способа представления данных: числовой, (или оцифрованный), символьный, (или текстовый), и аналоговый (изображения, звук и видео). Все три способа существуют одновременно.
Рис. 31. Готфрид Лейбниц
Поразительно смелое даже по нынешним временам утверждение о том, что мышление есть неосознанный процесс вычислений, высказал ещё в XVII веке Готфрид Лейбниц (Gottfried Leibniz). Под мышлением здесь явно понимается процесс обработки данных, которые во всех случаях могут представляться как числа. Тогда понятно, как появляются вычисления, но понимание сути этого процесса у современной науки пока отсутствует 34.
У всех данных здесь определений понятия числа есть одна общая основа:
Числа существуют объективно в том смысле, что они присутствуют в законах окружающего мира, познавать которые можно только через числа .
Со школьной скамьи все узнают о числах из детской считалки: раз, два три, четыре, пять и т.д. Откуда взялась эта считалка, один Господь ведает. Впрочем, были и попытки объяснить её происхождение с помощью аксиом. Однако происхождение их такое же непонятное, как и считалки. Скорее это похоже на некое подражание «Началам» Евклида, чтобы придать знаниям образ науки и внешнюю видимость солидности и фундаментальности.
Ситуация совсем иная, когда есть математическое определение сущности числа. Тогда для более полного его понимания становятся необходимостью и аксиомы, и считалка. Действительно, данное определение сущности числа включает в себя аргументы, действия и счётную величину. Но аргументы – это тоже числа, и они должны представляться не конкретно каждое из них, а по умолчанию, т.е. в форме общепринятой и неизменной функции, которая называется системой счисления, а она-то никак уже не может появиться без такого понятия как счёт. Вот теперь уже по отношению к счёту, аксиомы оказываются весьма кстати и без них он может появиться разве только от пришельцев. Да, собственно, в действительности это так и было, поскольку такие источники знаний как «Начала» Евклида или «Арифметика» Диофанта созданы явно не нашей, а совсем другой цивилизацией 35.
Читать дальше