Иэн Стюарт - Величайшие математические задачи

Здесь есть возможность читать онлайн «Иэн Стюарт - Величайшие математические задачи» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2015, ISBN: 2015, Издательство: Альпина нон-фикшн, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Величайшие математические задачи: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Величайшие математические задачи»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Величайшие математические задачи — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Величайшие математические задачи», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6

Нахождение конечного разбиения квадрата и собирания из этих частей круга известно как квадратура круга Тарского. Миклош Лацкович решил эту задачу в 1990 г. Его метод неконструктивен и использует теорему выбора, при этом число частей, на которые нужно делить квадрат, огромно — около 10 50.

7

Квадратриса Гиппия — это кривая, описываемая точкой пересечения вертикальной прямой, движущейся равномерно через прямоугольник, и прямой, которая равномерно поворачивается вокруг середины нижней стороны прямоугольника (см. рис. 52). Такое соотношение превращает любой вопрос о делении угла в вопрос о соответствующем делении отрезка. К примеру, чтобы разделить угол натрое, нужно всего лишь разделить натрое соответствующий отрезок прямой. См.: http://www.geom.uiuc.edu/~huberty/math5337/groupe/quadratrix.html.

8 Вот красноречивый пример Геометрически если прямая пересекается с - фото 81

8

Вот красноречивый пример. Геометрически если прямая пересекается с окружностью и не является касательной, то она имеет с окружностью ровно две общие точки. Возьмем прямую, параллельную горизонтальной оси, на расстоянии 1/2 над ней (см. рис. 53). Эта прямая описывается очень простым уравнением: y = 1/2. (При любом x мы имеем одно и то же значение y .) Если y = 1/2, то уравнение x ² + y ² = 1 превращается в x ² + 1/4 = 1. Отсюда x ² = 3/4, а Величайшие математические задачи - изображение 82Алгебра говорит, что прямая пересекает единичную окружность ровно в двух точках Величайшие математические задачи - изображение 83Это вполне согласуется с рис. 53 и чисто геометрическими соображениями.

9 Строго говоря многочлен о котором идет речь должен иметь целые - фото 84

9

Строго говоря, многочлен, о котором идет речь, должен иметь целые коэффициенты и быть несокращаемым (т. е. не являться произведением двух многочленов меньших степеней с целыми коэффициентами). Степень многочлена, равная степени двойки, — необходимое, но не достаточное условие для существования построения при помощи циркуля и линейки. Если степень не равна степени двойки, построение существовать не может. Если равна, то для решения вопроса о его существовании необходим дальнейший анализ.

10

Обратное тоже верно: данные построения для правильных трех— и пятиугольников можно получить из построения 15-угольника. Идея в том, что 2/5 − 1/3 = 1/15. В отношении простых степеней есть один тонкий момент. Эти рассуждения не позволяют построить, скажем, девятиугольник, хотя построение для простых делителей числа (а именно треугольника) существует. Гаусс доказал, что для нечетных простых чисел, возведенных в степень больше 1, построение невозможно.

11

Чтобы разобраться в этом утверждении, разложим квадратный многочлен на линейные множители. Тогда x ² − 1 = ( x + 1) ( x − 1), что равно нулю, если любой из множителей равен нулю, так что x = 1 или x = −1. Те же рассуждения можно применить к x ² = xx : это равно нулю, если нулю равен один из множителей. В данном случае они совпадают, но наличие двух множителей x отличает этот случай от чего-нибудь вроде x ( x − 1), где множитель x один. При ответе на вопрос о том, сколько решений имеет алгебраическое уравнение, подобную «множественность» лучше учитывать.

12

При n = 9 второй множитель будет

x 8+ x 7+ x 6+ x 5+ x 4+ x 3+ x 2+ x + 1.

Но он и сам является составным: он равен

( x 2+ x + 1) ( x 6+ x 3+ 1).

Гауссова характеристика чисел, допускающих построение, требует, чтобы степень каждого несократимого множителя была степенью 2. Но степень второго множителя — 6 — не является степенью 2.

13

Гаусс доказал, что 17-угольник можно построить, если вы умеете строить отрезки длиной

Поскольку квадратный корень всегда можно построить это вполне эффективно - фото 85

Поскольку квадратный корень всегда можно построить, это вполне эффективно решает задачу. Другие математики нашли более очевидные построения. Ульрих фон Гугенин опубликовал первое из них в 1803 г., а Г. Ричмонд в 1893 г. нашел более простое. На рис. 54 возьмем два перпендикулярных радиуса AOP 0и BOC окружности. Пусть OJ = 1/4 OB, а угол OJE = 1/4 OJP 0. Найдем F, такое, что угол EJF равен 45°. Построим окружность с диаметром FP 0; она пересекается с OB в точке K. Проведем через K окружность с центром в точке E; она пересечет AP 0в точках G и H. Построим в этих точках перпендикуляры к AP 0, назовем их HP 3и GP 5. Тогда P 0, P 3, P 5представляют собой соответственно нулевую, третью и пятую вершины правильного 17-угольника. Теперь несложно построить и остальные вершины.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Величайшие математические задачи»

Представляем Вашему вниманию похожие книги на «Величайшие математические задачи» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Величайшие математические задачи»

Обсуждение, отзывы о книге «Величайшие математические задачи» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x