Эллиптическая кривая.Кривая на плоскости, уравнение которой имеет вид y ² = ax ³ + bx ² + cx + d ; постоянные a, b, c, d обычно считаются рациональными (см. рис. 27).
Эллиптическая функция.Комплексная функция, значение которой не меняется при прибавлении к переменной двух независимых комплексных чисел. Иными словами, f ( z ) = f ( z + u ) = f ( z + v ), где v не равно u , домноженному на действительный коэффициент (см. рис. 30).
Адамар Ж. Исследование психологии процесса изобретения в области математики. — М.: Советское радио, 1970.
Доксиадис А. Дядя Петрос и проблема Гольдбаха. — М.: АСТ, 2002.
Тернарная гипотеза Гольдбаха была окончательно доказана перуанским математиком Харальдом Гельфготтом в 2013 г. — Прим. ред.
Выражение pretty regular dodecahedrons в переводе с английского может означать как то, так и другое. — Прим. пер.
Имеется в виду, что если теорема Ферма доказана для показателя m , то она автоматически доказана и для любого показателя, кратного m . Таким образом, требуется доказать ее только для простых степеней, начиная от 3, и отдельно для показателя 4, поскольку для 2 она неверна. — Прим. пер.
Изотопы были открыты в 1906–1907 гг. при исследовании продуктов радиоактивного распада тяжелых элементов. Название «изотоп» было предложено в 1910 г. Фредериком Содди. Амедео Авогадро (1776–1856) ровно на 100 лет раньше, в 1811 г., предложил метод определения масс молекул исходя из пропорций, в которых вещества вступают в химические реакции. — Прим. пер.
Вот как выглядят на сегодняшний день проблемы Гильберта и их статус:
1. Континуум-гипотеза.Существует ли бесконечное кардинальное число строго между кардиналами множеств целых и действительных чисел? Решена Полом Коэном в 1963 г. — ответ на вопрос зависит от того, какие аксиомы используются в теории множеств.
2. Логическая непротиворечивость арифметики.Доказать, что стандартные аксиомы арифметики не могут привести к противоречию. Решена Куртом Геделем в 1931 г.: с обычными аксиомами теории множеств такое доказательство невозможно.
3. Равносоставленность равновеликих тетраэдров.Если два тетраэдра имеют одинаковый объем, то всегда ли можно разрезать один из них на конечное число многоугольников и собрать из них второй? Решена в 1901 г. Максом Деном, ответ отрицательный.
4. Прямая как кратчайшее расстояние между двумя точками.Сформулировать аксиомы геометрии на основе данного определения прямой и посмотреть, что из этого следует. Слишком расплывчатая задача, чтобы можно было рассчитывать на определенное решение, но сделано немало.
5. Группы Ли без опоры на дифференцируемость.Технический вопрос теории групп преобразований. В одной из интерпретаций ее решил Эндрю Глисон в 1950-е гг., в другой — Хидехико Ямабе.
6. Аксиомы физики.Разработать строгую систему аксиом для математических областей физики, таких как теория вероятностей или механика. Систему аксиом для вероятностей построил Андрей Колмогоров в 1933 г.
7. Иррациональные и трансцендентные числа.Доказать, что определенные числа являются иррациональными или трансцендентными. Решена в 1934 г. Александром Гельфондом и Теодором Шнайдером.
8. Гипотеза Римана.Доказать, что все нетривиальные нули римановой дзета-функции лежат на критической линии. См. главу 9.
9. Законы взаимности в числовых полях.Обобщить классический закон квадратичной взаимности (о квадратах по определенному модулю) на более высокие степени. Частично решена.
10. Условия существования решений диофантовых уравнений.Найти алгоритм, позволяющий определить, имеет ли данное полиномиальное уравнение со многими переменными решения в целых числах. Невозможность доказал Юрий Матиясевич в 1970 г.
11. Квадратичные формы с алгебраическими числами в качестве коэффициентов.Технические вопросы решения диофантовых уравнений со многими переменными. Решена частично.
12. Теорема Кронекера об абелевых полях.Технические вопросы обобщения теоремы Кронекера. Не доказана до сих пор.
13. Решение уравнений седьмой степени при помощи функций специального вида.Доказать, что общее уравнение седьмой степени не может быть решено с использованием функций двух переменных. В одной из интерпретаций возможность такого решения доказали Андрей Колмогоров и Владимир Арнольд.
Читать дальше
Конец ознакомительного отрывка
Купить книгу