Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

То же самое можно сказать об алгоритме поиска террористов, применяемом в Facebook, и о вашем соседе по дому. Присутствие соседа в списке потенциальных террористов действительно наводит на мысль, что он может им быть. Но ваша априорная вероятность истинности этой гипотезы должна быть крайне малой, поскольку большинство людей не являются террористами. Следовательно, несмотря на факт включения соседа в список, ваша апостериорная вероятность остается такой же малой, и вы не беспокоитесь по этому поводу – во всяком случае, не должны беспокоиться.

Полагаться исключительно на проверку значимости нулевой гипотезы – это значило бы поступать совершенно не по-байесовски: строго говоря, такой подход предлагает нам относиться к лекарству от рака и к пластиковому Стоунхенджу с одинаковым уважением. Можно ли считать это ударом по взглядам Фишера на статистику? Напротив. Когда Фишер говорит, что «ни у одного ученого нет фиксированного уровня значимости, в соответствии с которым он из года в год, при любых обстоятельствах отбрасывает гипотезы; скорее, он осмысливает каждую конкретную гипотезу в свете имеющихся доказательств и идей», он имеет в виду, что к научному выводу нельзя (или как минимум не следует) подходить сугубо механически; необходимо учитывать также сформировавшиеся ранее идеи и убеждения.

Впрочем, Фишер не был специалистом по байесовской статистике. В наши дни это словосочетание относится к целой совокупности практик и систем взглядов в статистике (когда-то не очень популярных, но сейчас довольно распространенных), которым свойственно общее расположение к аргументации, основанной на теореме Байеса, однако это не просто вопрос принятия во внимание как прежних убеждений, так и новых эмпирических данных. Байесов подход получил наибольшее распространение в различных видах вывода (например, в случае обучения вычислительных машин способности учиться на основе большого объема информации, полученной от человека), плохо сочетающихся с вопросами «да или нет», на решение которых был рассчитан подход Фишера. В действительности специалисты по байесовской статистике зачастую вообще не думают о нулевой гипотезе. Вместо того чтобы задавать вопрос: «Оказывает ли новый лекарственный препарат какое-либо воздействие?» – они могут больше интересоваться наиболее вероятным предположением прогностической модели, описывающей воздействие разных доз препарата на разные группы людей. А когда эти специалисты действительно говорят о гипотезах, они относительно свободно говорят о вероятности того, что гипотеза (скажем, новый препарат лучше существующего) истинна. Фишер не испытывал такой непринужденности в отношении вероятности истинности гипотез. Он считал, что язык вероятности используется должным образом только в ситуации, в которой имеет место некий реальный случайный процесс.

Теперь мы прибыли на берег огромного моря философских проблем, в которое погрузим только один-два пальца, не больше.

Когда мы называем теорему Байеса теоремой, это предполагает, что речь идет о непререкаемых истинах, подтвержденных математическим доказательством. Это и верно и нет. Все сводится к трудному вопросу о том, что мы имеем в виду, когда говорим «вероятность». Когда мы говорим, что вероятность истинности теории red составляет 5 %, мы можем иметь в виду, что на самом деле существует огромное множество колес рулетки, в котором одна из двадцати рулеток сделана так, что шарик выпадает на красное в трех из пяти случаев, а также что любое колесо рулетки, с которым мы сталкиваемся, наугад выбрано из общего множества колес. Если мы имеем в виду именно это, тогда теорема Байеса – очевидный факт, подобный закону больших чисел, о котором шла речь в предыдущей главе. Эта теорема гласит, что в большом интервале времени при условиях, которые мы сформулировали в примере, 12 % колес рулетки, выдающих последовательность RRRRR, – это рулетки, отдающие предпочтение красным ячейкам.

Но на самом деле речь идет не об этом. Когда мы утверждаем, что вероятность истинности теории red составляет 5 %, мы говорим не о глобальном распределении работающих колес рулетки с систематической ошибкой (откуда нам знать об этом?), а скорее, о собственном психическом состоянии. Пять процентов – это степень нашей уверенности в том, что колесо рулетки, с которым мы имеем дело, смещено в сторону красных ячеек.

Кстати, Фишер полностью отказался принять такой подход. Он безжалостно раскритиковал книгу Джона Мейнарда Кейнса Treatise on Probability («Трактат о вероятности»), в которой говорится, что вероятность «измеряет “степень разумной убежденности”, которая приписывается теореме в свете представленных доказательств». Мнение Фишера об этой точке зрения прекрасно подытожено в заключительных строках: «Если студенты, изучающие математику в нашей стране, приняли бы изложенные в последнем разделе книги господина Кейнса взгляды как нечто непререкаемое, это оттолкнуло бы их от одной из самых перспективных областей прикладной математики, вызвав у некоторых отвращение, а большинство оставив в неведении» {148}.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x