Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(Даже в те времена популяризация математических достижений представляла собой активную область. Эдмонд Хойл, чтобы помочь любителям азартных игр освоить новую теорию, написал учебный трактат An Essay Towards Making the Doctrine of Chances Easy to those who Understand Vulgar Arithmetic only, to which is added some useful tables on annuities («Исследование, предназначенное, чтобы сделать “теорию случайностей” более понятной для людей, понимающих только простую арифметику, а также несколько полезных таблиц аннуитетов»). Авторитет Хойла в вопросах карточных игр был настолько велик, что многие до сих пор ссылаются на его мнение; в определенной среде нередко можно услышать расхожие фразы: «По утверждению Хойла», «По правилам Хойла».)

Де Муавра не удовлетворял закон больших чисел, гласивший, что в долгосрочной перспективе доля аверсов в последовательности подбрасываний монет все больше приближается к 50 %. Он хотел знать, насколько ближе. Чтобы понять сделанное Муавром открытие, предлагаю вернуться к подбрасыванию монет и еще раз проанализировать этот феномен. Но теперь вместо перечисления общего количества монет, выпавших лицевой стороной вверх, мы будем записывать разность между количеством фактически выпавших аверсов и количеством аверсов, выпадания которых можно ожидать в случае 50 % подбрасываний.

Если подбрасывать десяток монет, вы получите такую последовательность:

1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 0, 4, 2, 0, 2, 1, 0, 2, 2, 4…

Если подбрасывать сотню монет, последовательность выглядит так:

4, 4, 2, 5, 2, 1, 3, 8, 10, 7, 4, 4, 1, 2, 1, 0, 10, 7, 5…

А в случае тысячи монет будет получена такая последовательность:

14, 1, 11, 28, 37, 26, 8, 10, 22, 8, 7, 11, 11, 10, 30, 10, 3, 38, 0, 6…

Как видите, отклонения от 50 на 50 в абсолютном выражении становятся больше по мере увеличения количества подбрасываний монет, хотя (как того требует закон больших чисел) эти отклонения становятся меньше в случае относительной доли монет, выпавших той или иной стороной. Де Муавр пришел к выводу, что типичное отклонение [69]зависит от квадратного корня из количества монет, которые вы подбрасываете. Подбросьте в сто раз больше монет, чем раньше, и типичное отклонение возрастет в 10 раз – во всяком случае, в абсолютном выражении. В случае доли от общего количества подбрасываний отклонение сокращается по мере увеличения количества монет, поскольку квадратный корень из количества монет увеличивается гораздо медленнее, чем само количество монет. Тот, кто подбрасывает тысячу монет, порой отклоняется от уровня равномерного распределения на целых 38 аверсов, однако – с точки зрения доли от общего количества бросков – это составляет всего 3,8 % от распределения 50 на 50.

Наблюдение де Муавра совпадает с концепцией, лежащей в основе расчетов стандартной погрешности в результатах политического опроса. Если вы хотите сократить уровень погрешности в два раза, вам необходимо опросить в четыре раза больше людей. Но если вы хотите знать, как правильно оценить довольно большое количество выпавших аверсов, можно определить, на сколько квадратных корней из числа попыток данное значение отклоняется от 50 %. Квадратный корень из 100 равен 10. Следовательно, если я получил 60 аверсов за 100 попыток, это и есть отклонение на один квадратный корень от распределения 50 на 50. Квадратный корень из 1000 равен почти 31; следовательно, если я получил 538 аверсов за 1000 попыток, значит, мне удалось совершить нечто еще более удивительное, хотя во втором случае я получил всего 53,8 % аверсов, тогда как в первом случае – 60 %.

Однако де Муавр еще не поставил точку в своих изысканиях. Он обнаружил, что в долгосрочной перспективе отклонения от 50 на 50 всегда стремятся сформировать идеальную колоколообразную кривую, которую мы называем нормальным распределением. Основоположник статистики Фрэнсис Исидор Эджуорт предложил называть эту кривую шлемом жандарма {47}. (Должен признаться, мне жаль, что этот термин не прижился.)

Колоколообразная кривая («шлем жандарма») высокая посередине и плоская по краям; другими словами, чем дальше отклонение от нуля, тем меньше вероятность такого отклонения. Это можно точно представить в количественной форме. Если вы подбрасываете N монет, вероятность того, что в итоге вы отклонитесь от 50 % не более чем на квадратный корень из N , составляет 95,45 %. Квадратный корень из 1000 равен 31; в действительности восемнадцать из представленных выше двадцати попыток в случае подбрасывания тысячи монет (или 90 %) были в пределах 31 аверсов больше или меньше 500. Если я продолжил бы игру, относительная доля количества раз, когда я попадал бы в диапазон от 469 до 531, все больше приближалась бы к показателю 95,45 % [70].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x