Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако не всякая рейтинговая система разработана настолько грамотно, чтобы принимать во внимание закон больших чисел. В штате Северная Каролина, как и во многих других штатах в эпоху образовательной отчетности, были введены программы мотивации, рассчитанные на школы, добивающиеся высоких результатов по стандартизованным тестам. Рейтинг каждой школы определяется по среднему увеличению количества баллов, полученных учениками по тестам за период с весны текущего до весны следующего года. Школы, занявшие в рейтинге по данному показателю первые 25 мест, вывешивают свой плакат в спортивном зале и получают право с гордостью говорить о своих достижениях в близлежащих городах.

Кто побеждает в таком соревновании? Например, в 1999 году первое место в рейтинге (с «суммарным показателем результативности», равным 91,5) заняла начальная школа C. C. Wright Elementary в Северном Уилксборо. Это небольшая школа (всего 418 учеников), расположенная в штате, в котором средняя численность учеников начальных школ составляет 500 детей. Второе место заняла школа Kingswood Elementary (90,9 балла), за ней следует школа Riverside Elementary (90,4 балла). В школе Kingswood насчитывалось лишь 315 учеников, а в начальной школе Riverside из аппалачского городка Ньюленд учился только 161 ребенок {44}.

Получается, что по данному показателю небольшие школы обошли все остальные школы штата Северная Каролина. Томас Кейн и Дуглас Стейджер провели исследование, в ходе которого было установлено, что в тот или иной момент семилетнего периода, охваченного исследованием, 28 % самых маленьких школ штата попадали в первые 25 мест рейтинга; при этом из всех школ только 7 % школ получали право вывесить плакат в спортзале {45}.

Создается впечатление, что в маленьких школах уделяется больше времени для индивидуального обучения, поскольку учителя хорошо знают своих учеников и их семьи, и поэтому они лучше справляются с повышением результатов тестов.

Может быть, мне следует упомянуть, что статья Кейна и Стейджера называется так: The Promise and Pitfalls of Using Imprecise School Accountability Measures («Перспективы и подводные камни использования неточных показателей школьной отчетности»). Кроме того, нелишне отметить, что небольшие школы в среднем не демонстрируют тенденции к получению существенно более высоких результатов по тестам. И еще не мешало бы добавить, что школы, куда были направлены «группы по оказанию поддержки» (речь идет о школах, получивших от властей штата взбучку за низкие результаты по тестам), в большинстве своем также относились к числу небольших школ.

Короче говоря, насколько нам известно, школа Riverside не может считаться одной из лучших начальных школ штата Северная Каролина, так же как и Армон Джонсон не может быть самым метким снайпером в лиге. Небольшие школы занимают большинство из первых 25 мест в рейтинге не потому, что они лучшие, а потому что в маленьких школах более высокий уровень вариабельности результатов тестов. С одной стороны, несколько одаренных детей и несколько двоечников из третьего класса в состоянии существенно изменить средний показатель школы. С другой стороны, в крупной школе воздействие нескольких очень высоких или очень низких результатов просто растворится в большом среднем значении, практически не изменив общего показателя.

Не совсем ясно, по каким критериям определять, почему одна школа самая лучшая и почему граждане одного штата больше всего подвержены онкологическим заболеваниям, когда вычисление простых средних показателей не позволяет сделать этого? Если вы руководите работой многих групп, как вычислить эффективность каждой из них, если более мелкие группы с большой вероятностью займут как верхние, так и нижние позиции вашего рейтинга?

К сожалению, легкого ответа на этот вопрос не существует. Если в таком крохотном штате, как Южная Дакота, имеет место резкое увеличение уровня заболеваемости раком мозга, вы можете предположить, будто этот всплеск в значительной мере произошел по воле случая, и сделать вывод, что в будущем уровень заболеваемости раком мозга приблизится к общему показателю по стране. Это можно сделать, вычислив взвешенное среднее от уровня заболеваемости в Южной Дакоте и в целом по стране. Но как взвесить два данных показателя? В какой-то мере это искусство, требующее больших затрат труда на выполнение формальных операций, от описания которых я вас здесь избавлю {46}.

Один важный факт впервые обнаружил Абрахам де Муавр, который внес большой вклад в теорию вероятностей. Его книга The Doctrine of Chances («Теория случайностей») стала одним из ключевых трудов по этому предмету.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x