Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поскольку это лишено смысла, нам лучше поискать другое объяснение.

В надежде понять, что происходит, предлагаю провести воображаемую игру, которую мы назовем «Кто лучше всех подбросит монету». Игра очень простая. Вы подбрасываете какое-то количество монет, а побеждает тот, у кого больше всего монет упадет вверх лицевой стороной (аверс). Чтобы несколько разнообразить игру, представим, будто не у всех ее участников одинаковое количество монет. У Малой команды всего по десять монет на каждого человека, тогда как у Большой команды на каждого приходится по сто монет.

Если подсчитывать только абсолютное количество монет, упавших лицевой стороной вверх, одно можно утверждать почти наверняка: победителем в этой игре станет кто-то из Большой команды. Этот кто-то получит около 50 аверсов – показатель, который ни один участник Малой команды просто не сможет потянуть. Даже если в Малой команде было бы сто игроков, самый результативный из них получит восемь-девять монет, выпавших лицевой стороной вверх [64].

Кажется, это крайне несправедливо! У Большой команды с самого начала имеется большее преимущество. Давайте вместо подсчета абсолютного количества монет, выпавших той или иной стороной, будем определять победителя по относительной доле выпавших монет, что должно создать для двух команд более равные условия.

Но этого не происходит. Как я уже сказал, если в Малой команде было бы сто игроков, минимум один из них мог бы выбить хотя бы восьми-девяти аверсов. Следовательно, в результате он получит минимум 80 % монет, выпавших лицевой стороной вверх. А как насчет Большой команды? Ни один из ее игроков не получит 80 % орлов. Безусловно, физически такое возможно. Тем не менее этого не случится. На самом деле вам понадобилось бы около двух миллиардов игроков в составе Большой команды, чтобы появилась довольно высокая вероятность получения результата, свидетельствующего о серьезном перевесе. Разве не об этом говорит ваше интуитивное представление о правдоподобии? Чем больше монет вы подбрасываете, тем больше вероятность того, что вы приблизитесь к результату 50 на 50.

Вы можете попытаться сами! Я так и сделал, и вот что произошло. Многократно подбрасывая десять монет подряд, как это сделали бы игроки Малой команды, я получил такую последовательность количества монет, выпавших лицевой стороной вверх:

4, 4, 5, 6, 5, 4, 3, 3, 4, 5, 5, 9, 3, 5, 7, 4, 5, 7, 7, 9…

С сотней монет, как в случае Большой команды, я получил такую последовательность:

46, 54, 48, 45, 45, 52, 49, 47, 58, 40, 57, 46, 46, 51, 52, 51, 50, 60, 43, 45…

А в случае тысячи монет последовательность оказалась такой:

486, 501, 489, 472, 537, 474, 508, 510, 478, 508, 493, 511, 489, 510, 530, 490, 503, 462, 500, 494…

Честно говоря, я не подбрасывал тысячу монет. Вместо этого я поставил перед своим компьютером задачу смоделировать подбрасывание монет. Разве у кого-то найдется столько времени на тысячекратное подбрасывание монеты?

У одного человека нашлось – математик из Южной Африки Джон Эдмунд Керрич, которому дали опрометчивый совет посетить Европу ни больше ни меньше как в 1939 году. Его европейский семестр быстро превратился в незапланированное заключение в концлагере в Дании. Там, где обычный узник, не столь увлеченный статистикой, проводил бы дни заточения, царапая на стене камеры прошедшие дни, Керрич подбрасывал монету (всего 10 тысяч раз) и подсчитывал количество выпаданий лицевой стороной вверх {42}. Его результаты выглядели следующим образом:

Как видите доля монет выпавших лицевой стороной вверх непреклонно стремится - фото 39

Как видите, доля монет, выпавших лицевой стороной вверх, непреклонно стремится к 50 % по мере подбрасывания все большего количества монет, как будто под действием невидимых тисков. Тот же эффект можно увидеть и во время моделирования этого процесса. Доля монет, выпавших лицевой стороной в первой группе попыток, составляет от 30 до 90 %. В случае сотни подбрасываний подряд этот диапазон начинает сужаться и составляет от 40 до 60 %. А когда количество подбрасываний достигает тысячи, диапазон количества выпаданий лицевой стороной вверх составляет всего от 46,2 до 53,7 %. Что-то толкает наши числа все ближе и ближе к 50 %. Это равнодушная и сильная рука закона больших чисел. Я не стану приводить здесь точную формулировку соответствующей теоремы (хотя она удивительно красива!), но ее можно представить следующим образом: чем больше монет вы подбрасываете, тем более маловероятно, что вы получите 80 % монет, выпавших лицевой стороной вверх. В действительности, если вы подбросите достаточное количество монет, шанс, что у вас будет 51 % аверсов, становится ничтожным! Нет ничего примечательного, если в случае десяти подбрасываний наблюдается неравновесный результат, однако в случае сотни подбрасываний получение соразмерного неравновесного результата было бы настолько удивительным событием, что оно скорее всего заставит задуматься, не поработал ли кто с вашими монетами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x