К тексту
2. г) теннисного корта.
После того как Пиноккио солжет девять раз, длина его носа составит 2 9× 5 см = 512 × 5 см = 25,6 м, что примерно равно длине теннисного корта, которая равна 23,8 метра. Однако, согласно отчету Центра междисциплинарных наук при Университете Лестера, эта длина намного меньше возможной максимальной длины носа Пиноккио. Расчеты специалистов центра показывают, что если деревянная голова Пиноккио весит 4,18 килограмма, а нос – 6 граммов, первоначальная длина которого составляет один дюйм (2,54 см), то нос сломается только после 13 случаев вранья, когда он вырастет до 208 метров.
К тексту
3. в) eighteen (18).
В слове eighteen (18) восемь букв, а число 18 не кратно 8.
К тексту
4. г) Эми – крайняя слева.
Эми находится по левую сторону и от Бена, и от Криса. Следовательно, эти трое стоят в таком порядке: Эми, Бен, Крис или Эми, Крис, Бен. Это все, что нам известно, поэтому утверждение «г» однозначно верно. Ни одно из оставшихся утверждений не должно быть истинным, хотя утверждение «б» может быть истинным.
К тексту
5. E.
Эту задачу можно решить методом проб и ошибок. Можно также доказать следующее правило: чтобы нарисовать изображение, не отрывая карандаша от бумаги и не проводя карандашом по линии повторно, оно должно содержать не более двух точек, в которых сходится нечетное количество линий. Этому условию удовлетворяет только ответ E, поскольку на изображении вообще нет точек, в которых сходится нечетное количество линий, тогда как на других рисунках таких точек больше двух [38].
К тексту
6. б) 2.
Надеюсь, вы знаете хотя бы таблицу умножения на семь! В таком случае для вас не станет неожиданностью тот факт, что 35 делится на 7, а значит, и 350 000 делится на 7. На 7 делится также 49, и 4900. Поскольку 354 972 = 350 000 + 4900 + 72, остается только найти остаток от деления 72 на 7. Так как 7 × 10 = 70, остаток равен 2.
К тексту
7. в) 4.
В семье должно быть по меньшей мере два мальчика, поскольку если бы мальчик был только один, у него не было бы брата, что противоречит условиям задачи. Аналогично, в семье должно быть по меньшей мере две девочки, а значит, в семье минимум четверо детей.
К тексту
8. д) 9.
Просто выполните это забавное умножение на любом клочке бумаги – и задача решена.
К тексту
9. а) 3.
Надеюсь, на вашем листе бумаги еще осталось место. Впишите в пустые клетки пирамиды (начиная сверху и слева направо) буквы p, q, r ; в правую крайнюю клетку в четвертом ряду s и в пятом ряду между клетками с числом 9 и буквой х – t. Вот необходимые вычисления:
p = 105 – 47 = 58;
q = p – 31 = 58–31 = 27;
r = 47 – q = 47–27 = 20;
s = r – 13 = 20–13 = 7;
t = 13 – 9 = 4;
х = s – t = 7–4 = 3.
К тексту
10. а) 2.
С моей стороны было бы неучтиво не включить задачу на деление в столбик, в результате чего получим
поэтому десятичная дробь содержит только две разные цифры.
К тексту
Глава 1. Капуста, неверные мужья и зебра. Логические задачи
1. ВОЛК, КОЗА И КАПУСТА
Решить задачу с девятью переправами можно следующим образом. (Надо отметить, что, по условиям задачи, мужчин нельзя назвать джентльменами еще и потому, что женщины вынуждены грести по меньшей мере во время шести переправ – а может, и во время всех.) В целом стратегия такова: нужно взять первую пару, а затем вторую и третью и т. д. при условии, что братья всегда сходят на берег раньше сестер.
При более строгом соблюдении условий второй шаг недопустим, поскольку, когда сестра из первой пары вернется на левый берег, она окажется без сопровождения брата в присутствии мужчин, не состоящих с ней в родстве. В этом случае самое быстрое решение потребует одиннадцати переправ. Суть задачи о волке, козе и капусте состояла в том, что для переправы всего имущества через реку требовалось перевезти на другой берег один объект, затем вернуть его назад и снова перевезти. В данной задаче мы должны перевезти каждую сестру на другой берег, вернуть назад и снова переправить через реку.
Вот еще один из способов сделать это.
К тексту
Читать дальше
Конец ознакомительного отрывка
Купить книгу