Джозеф Мазур - Игра случая. Математика и мифология совпадения

Здесь есть возможность читать онлайн «Джозеф Мазур - Игра случая. Математика и мифология совпадения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Альпина, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Игра случая. Математика и мифология совпадения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Игра случая. Математика и мифология совпадения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий. Эта книга понравится всем, кто когда-либо задавался вопросом, каким образом маленькие решения, которые мы принимаем в течение жизни, складываются в невероятное целое. Книга обязательна к прочтению любителям математики, а также всем тем, кто стремится понять истинную природу невероятных историй.

Игра случая. Математика и мифология совпадения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Игра случая. Математика и мифология совпадения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

История 3. История о кресле-качалке

У истории Энн Парриш было преимущество синхронизации с широкими границами. «Джек Фрост и другие истории» могла пролежать в киоске среди других книг на английском несколько месяцев до приезда Энн, и кто знает, сколько еще пролежала бы, реши Энн приехать в Париж позже.

История о кресле-качалке – это такой тип историй, которые могут происходить только при точной синхронизации. Подробности истории, уже описанные в главе 2, следующие. У моего брата, проживающего в Кембридже, Массачусетс, в гостиной стояло кресло-качалка. Моя жена заказала такое же кресло в магазине в Кембридже. Кресла не было в наличии, поэтому его должны были доставить брату домой позже, через несколько недель. В доме у брата были гости, и кто-то из них уселся в кресло. Через несколько секунд после того, как кресло развалилось на кусочки прямо под гостем, в дверь позвонили. Это доставили новое кресло.

Как со многими из таких историй, трудно дать шансам численную оценку. Но мы можем по крайней мере разобраться с порядком цифр.

История вполне могла быть случаем синхронии. Но рассмотрим переменные: заказанное кресло было точной копией того, что принадлежало моему брату. Этот факт вносит вклад в историю, но не в совпадение. Моя жена видела кресло в гостиной у брата и захотела купить точно такое же. Ей наверняка сказали, где его можно купить. Первой важной переменной было то, что кресла в наличии не оказалось. Если бы оно было, то не было бы этой замечательной истории.

Второй переменной стал приход гостей. То, что один из гостей был в этот момент у брата в гостиной, – вполне правдоподобно. Это был друг, который часто заходил в гости, так что мы можем оценить шансы его пребывания в конкретном месте выше чем 9 к 1, а следовательно, и вероятность p 1, где 0,1 < p 1≤ 1. Есть, конечно, еще шанс того, что он сел бы именно в кресло-качалку.

Это легко подсчитать. Насколько я помню, в комнате было 2 дивана, на которых могли разместиться 6 человек, и 6 кресел, одно из которых – черное кресло-качалка. Если выбор места был случайным и если никто еще не успел сесть, то шансы гостя выбрать кресло-качалку будут p 2, где 0,1 < p 2≤ 0,01.

Но люди не выбирают случайным образом, куда им сесть, особенно если один из вариантов – кресло-качалка. Иными словами, не зная ничего о человеке, оценить шансы сложно. Чисто теоретически, однако, давайте договоримся, что 0,1 < p 2≤ 0,01.

Сложно установить точный момент, когда развалилось кресло – иначе говоря, вероятность того, что кресло сломалось бы ровно в тот момент, когда в него сел гость. Мы можем только предположить, что кресло вот-вот должно было сломаться. Мы позволяем себе такую вольность, понимая, что все же должны дать нашей оценке некоторую свободу маневра.

Время доставки установить проще. Если кресла в наличии не было, а доставка ожидалась в течение следующих 2 недель, нам следовало бы ожидать ее в течение второй недели в рабочее время. В неделе 3360 минут рабочего времени. Мы можем разложить события до той секунды, когда, как рассказывается в истории, в дверь позвонили, но, чтобы избежать лишних деталей, давайте остановимся на минутах. Комизм ситуации от этого ничуть не пострадает. Итак, вероятность p 3того, что в дверь позвонили бы в тот самый момент, когда гость сел в кресло и оно сломалось, составляет 1/3360, или примерно 0,0003. Следовательно, мы можем заключить, что вероятность p = ppp 3того, что история произойдет с конкретной группой людей, будет между 0,0000003 и 0,0003. Как ни удивительно, но эта история потрясающе маловероятна. Шансы между 3 333 332 к 1 и 3332 к 1. На нижнем пределе шансы хуже, чем шанс выиграть в лотерею хотя бы по одному из четырех билетов. На верхнем пределе шансы лучше, чем шанс получить каре при игре в покер.

История 4. Золотой скарабей

Скарабеи (или пластинчатоусые) – это название одного из семейств жуков. Их отличают крупное тельце, металлический окрас и булавовидные усики. Июньский хрущ и японский хрущик – одни из самых распространенных в США видов. У Карла Юнга была пациентка, которой приснился сон о золотом скарабее. Юнг сидел спиной к закрытому окну, слушал рассказ пациентки о ее сне и вдруг уловил, как что-то легонько постукивает по стеклу. Он повернулся и увидел насекомое, бьющееся снаружи о стекло, как будто пытаясь привлечь его внимание. Он открыл окно и поймал насекомое на лету. Это, несомненно, был скарабей. Юнг использовал это совпадение как эталонный пример того, что он называл синхронией, т. е. одновременностью двух событий, происходящих в одно время и в одном месте таким образом, что это нельзя объяснить простой случайностью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Игра случая. Математика и мифология совпадения»

Представляем Вашему вниманию похожие книги на «Игра случая. Математика и мифология совпадения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Игра случая. Математика и мифология совпадения»

Обсуждение, отзывы о книге «Игра случая. Математика и мифология совпадения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x