Но слабый закон больших чисел говорит нам, что разница между p и k / N будет сколь угодно мала при условии, что N достаточно велико. Мы можем интуитивно догадаться, что при N = 73 000 (2 года поисков) k составит по меньшей мере 1, а затем мы смело предположим, что N достаточно велико, чтобы допустить, что P [| k / N – p| < 0,001] > 0,5. А это значит: существует шанс выше, чем 1 к 1, что вероятность того, что один человек найдет именно ту книгу, которую ищет, будет близка к 0,000014, а это дает нам шансы 71 427 к 1, т. е. очень близко к шансам получить стрит-флеш при игре в покер!
Все это означает, что верхний предел реальной вероятности не так уж безумно низок. Вероятность реальной истории, а именно того, что она произойдет с конкретным человеком, куда меньше. Иными словами, пусть у нас и нет определенной числовой вероятности того, что исходная история необычайно редка, есть, однако, понимание того, что подобные истории не столь исключительны.
Большой вопрос не в том, что Хопкинс нашел экземпляр «Девушки с Петровки», а в том, что это был экземпляр Файфера! Вот это действительно совпадение с непостижимо малым значением p . Только вот… Только вот Файфер сказал, что потерял свой экземпляр недалеко от того места, где он был впоследствии найден.
История 2. История Энн Парриш
История Энн Парриш иная. Парриш просто смотрела, она не искала какую-то конкретную книгу, не говоря уж о ее собственной. Проанализировав историю Хопкинса, мы видим, что история Парриш менее редкая.
Если ничего не знать о жизни Энн Парриш, ее история кажется поразительной. Великолепная история без очевидной причины. Александр Вулкотт, литературный критик, работавший в то время в New Yorker , описал эту историю еще при жизни г-жи Парриш. Вот что он пишет:
Когда мы застаем жизнь в самый момент сложения стиха, наша необузданная радость является, по-видимому, мерой того, насколько мы в действительности боимся тайн ее неизведанных морей. Во всяком случае, я знаю, что когда впервые услышал эту историю, то носил ее с собой как талисман и склонен верить: когда не кто иной, как Энн Парриш, перешла улицу и направилась к книжным рядам, где-то в бескрайнем космосе усмехнулась звезда – усмехнулась и подпрыгнула на своей орбите {113}.
Но давайте соберем мозаику. Ее мать, имя которой также Энн, но называли ее Ани, изучала живопись в Пенсильванской академии изящных искусств в 1860 г.; тогда же там обучалась Мэри Кэссэт. Во время учебы в Пенсильванской академии Ани и Мэри стали близкими подругами. Мэри стала известной импрессионисткой и переехала в Париж, где училась и работала, а также подружилась с Эдгаром Дега и Камилем Писсарро. Тогда возможно ли, что Ани передала книгу своей хорошей подруге Мэри, а та забрала ее с собой в Париж? Мэри умерла в 1926 г. Ее имущество, вероятно, было распродано, как и библиотека, и американская книга Энн Парриш, «вероятно», оказалась на прилавке одного из парижских книжных киосков где-то между 1926 и 1929 гг., до того как Энн Парриш ее нашла.
Давайте еще об этом поразмыслим. На месте американца, приехавшего в Париж в 1929 г., вы, вполне вероятно, в какой-то момент посетили бы оба магазина «Шекспир и компания», а также книжные киоски на Сене. Это были известные места, где покупали и продавали бывшие в употреблении нераритетные книги на английском. Если вы в основном пишете для детей, то, вполне вероятно, будете рассматривать полки с детскими книгами особенно тщательно. На самом деле большинство моих знакомых писателей любят при любой возможности порыться на книжных полках, в особенности на тех, где стоят книги в их жанре. Тогда вот вполне вероятная цепочка событий, соединяющих «Джек Фрост и другие истории» в книжном киоске у Сены и молодую девушку, любимой книгой которой был «Джек Фрост и другие истории».
Но постойте. Тут важную роль играет синхронизация, как и со всеми хорошими совпадениями. Энн надо было оказаться в Париже в то время, когда книга появилась в киоске у Сены. Если бы она приехала раньше или если бы кто-то другой купил книгу, она бы упустила такую возможность. Может быть, книгу купил бы другой американец, привез бы ее в Америку, предоставив тем самым Энн еще один шанс. Но это было бы совсем другое, менее удивительное совпадение, а история о путешествии книги в Париж и обратно осталась бы безвестной. Здесь у синхронизации были широкие границы, что увеличило вероятность.
Присвоить шансам численное выражение будет сложно. Но давайте выдвинем некоторые разумные предположения. Сначала предположим, насколько вероятна была поездка Энн в Париж летом 1929 г. Я бы дал этой вероятности умеренное значение, близкое к 0,1. Энн была замужем за богатым промышленником. Париж в 1929 г. был одним из самых популярных европейских туристических направлений среди богатых американцев наряду с морскими путешествиями по греческим островам. Какова вероятность того, что она посетила бы книжные киоски, пока была в Париже? Я бы сказал, что вероятность этого 0,3. Сложнее всего установить вероятность того, что книга была бы в нужном месте. А вот здесь поможет сопутствующая история – связь между матерью Энн и Мэри Кэссэт, смерть Мэри и несколько мест в Париже, имеющих дело с бывшими в употреблении книгами. Я предположу, что вероятность будет примерно 0,01. Тогда вероятность подобной истории составит p = 0,1 × 0,3 × 0,01 = 0,0003, т. е. шансы в пользу события – 3331 к 1. Маловероятно, но все же лучше, чем шансы приехать в город с целью найти определенную книгу и подобрать ее на скамье в общественном месте. Да, есть много неучтенных скрытых переменных, усложняющих наши расчеты, но они не изменили бы значение вероятности больше чем на 1/10 000, а следовательно, шансы Энн Парриш все же немного выше, чем получить каре при игре в покер.
Читать дальше
Конец ознакомительного отрывка
Купить книгу