Джозеф Мазур - Игра случая. Математика и мифология совпадения

Здесь есть возможность читать онлайн «Джозеф Мазур - Игра случая. Математика и мифология совпадения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Альпина, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Игра случая. Математика и мифология совпадения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Игра случая. Математика и мифология совпадения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий. Эта книга понравится всем, кто когда-либо задавался вопросом, каким образом маленькие решения, которые мы принимаем в течение жизни, складываются в невероятное целое. Книга обязательна к прочтению любителям математики, а также всем тем, кто стремится понять истинную природу невероятных историй.

Игра случая. Математика и мифология совпадения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Игра случая. Математика и мифология совпадения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оставим саму историю, касающуюся Энтони Хопкинса и Джорджа Файфера, и попробуем разобраться, насколько вероятно, что некто, приехав в центр Лондона в поисках определенной книги, находит ее в каком-либо публичном месте. Эта задача намного проще. Если мы находим эту вероятность и она оказывается очень малой, то мы знаем, что реальная история, касающаяся Хопкинса и Файфера, еще менее вероятна. Тогда мы сделаем то, что часто делают математики: найдем «оценку сверху» [17]для интересующих нас чисел – в данном случае вероятность того, что ищущий книгу благополучно ее найдет. Мы сделаем еще кое-что, часто проделываемое математиками: упростим задачу, чтобы уточнить ее суть, и выясним, что действительная задача, которой предстоит заняться позже, значительно более сложна.

Лондон – большой город с 60 000 улиц, более чем 3000 маленьких парков и скверов, 8 большими королевскими парками, 111 книжными магазинами и 276 станциями метрополитена, разбросанными по всему городу. Однако если мы на несколько мгновений вернемся к истории Хопкинса, то сможем ограничить область до вполне реалистичных цифр. Хопкинс сказал, что нашел книгу на станции метро недалеко от Гайд-парка. Файфер подтвердил, что отдал книгу другу, который потерял ее в районе Гайд-парка. Ближайшая к Гайд-парку станция метро – «Марбл Арч», от которой полчаса пешком практически по прямой через Вигмор-стрит до окрестностей Британского музея, а в этом районе Лондона в то время было больше всего книжных магазинов. Имеет смысл ограничить зону поиска, скажем, радиусом 3 км от Британского музея. В этом районе приблизительно тысяча улиц. Но многие из них очень короткие, книжных магазинов на них немного, к тому же мало кто пойдет искать книгу вдали от главных улиц. Кроме того, брошенные книги можно с большей вероятностью найти в более проходных местах, таких как станции метро, и местах досуга, например в парках.

Суть истории не в Энтони Хопкинсе, а в «Девушке с Петровки» – кто-то находит определенную книгу в определенный день в чрезвычайно неожиданном месте.

Потому представим, что N человек ходят от одного книжного магазина к другому в безнадежных поисках книг, за которыми они приехали. Ограничим зону их скитаний радиусом 3 км от Британского музея. Затем предположим, что 10 книг были оставлены в общественных местах в этом районе. Найдет ли случайно кто-либо из этих N человек именно ту книгу, за которой приехал, среди 10 брошенных книг? Скорее всего, нет, если N – малое число. Это очень грубый мысленный эксперимент, но не настолько грубый, как вы могли подумать, поскольку люди, ищущие книги в Лондоне, не выбирают совершенно случайные маршруты. Они, скорее, заметят брошенную книгу в необычном месте. Далее пусть N будет большим числом. Мы ожидаем, что за день k ≤ 10 брошенных книг будут замечены, а следовательно, мы можем аппроксимировать коэффициент успешности k / N . Другими словами, у нас будет k успешных испытаний на N попыток. Далее слабый закон больших чисел говорит, что коэффициент успешности испытаний – это вполне годная аппроксимация p при условии, что N достаточно велико. Тогда вопрос будет звучать так: какое N достаточно велико? Определенно, N = 10 000 даст нам достаточно хороший шанс, что k будет больше нуля. Никто не ждет, что в определенный день 10 000 человек станут бродить по улицам Лондона в поисках книг, даже при том, что население Большого Лондона составляет 8,6 млн человек. Однако если мы расширим временно́е ограничение до одного года и допустим, что по 100 человек ведут поиски каждый день, многие из них – не по одному разу, тогда N = 36 500. За два года N = 73 000. Если принять такое, более либеральное значение N , то шансы, что кто-то из этих 73 000 найдет книгу, которую ищет, будут недалеки от шансов один к одному. Но конечно, почему только 2 года? Почему не 10? И почему только Лондон? Мы можем взять все Соединенные Штаты с 22 500 книжными магазинами или даже весь мир. Замечательный закон больших чисел учит нас, что не стоит недооценивать размеры мира.

Это творческая модель, она всей истории не расскажет. Скрытые переменные повсюду. Люди, ищущие определенные книги, могут запросто находиться поблизости от предмета своих поисков, но так и не заметить этого. Кроме того, мы видим, что N должно быть громадным, куда больше, чем 73 000, чтобы кто-то из этих N человек подобрал именно ту книгу, которую искал. Так что вероятность такого события куда меньше, чем любое отношение k / N , какое мы можем вообразить.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Игра случая. Математика и мифология совпадения»

Представляем Вашему вниманию похожие книги на «Игра случая. Математика и мифология совпадения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Игра случая. Математика и мифология совпадения»

Обсуждение, отзывы о книге «Игра случая. Математика и мифология совпадения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x