Быть может, подобные головоломки вам, как и Исааку Ньютону, покажутся трудными, но попытайтесь все-таки совершить над собой некое интеллектуальное насилие. Все это не просто стандартные "вопросы на повторение пройденного". Впереди космическое развитие темы Круга и Сферы, и к нему надо подготовиться.

1
...По счастью, журнал "Нейчур", заложивший основы изучения геометрических поцелуев, известен своей серьезностью. Серьезностью даже в шутках. Напечатав стансы Содди о целующихся кругах и сферах, редакция посчитала, что вопрос освещен недостаточно фундаментально. И спустя полгода, в январском номере 1937 года, опубликовала еще один заключительный станс, принадлежащий перу Форольда Госсета, обитавшего отнюдь не на Парнасе, но в Кембриджском университете. Это было одно из многих стихотворных произведений, присланных в редакцию с единственной целью: обобщить формулу Содди на случай n-мерного пространства, в котором целуются, естественно, n-мерные сферы — гиперсферы.
Чтобы вполне насладиться этим поэтическим шедевром, нам надо справиться с совсем простым делом: представить в себе n-мерную сферу.

2
"Когда нематематик слышит о четырехмерных вещах, его охватывает священный трепет..." — так говорил Альберт Эйнштейн. А Герман фон Гельмгольц считал, что представить себе четвертое измерение — все равно что слепому от рождения вообразить краски. Заметьте, речь идет всего лишь о четвертом измерении. Что же тогда сказать о пятом, шестом, а то и вообще об n-м?
И все-таки рискнем!
Впервые слова "n-мерное пространство" прозвучали в 1854 году в речи Бернгарда Римана при вступлении его на должность преподавателя Геттингенского университета. Она называлась "О гипотезах, образующих основания геометрии" и в самом деле провозглашала совсем новую, неожиданную и уж во всяком случае неевклидовую геометрию, названную впоследствии "римановой". Впрочем, и Евклид, создавая свою геометрию, возможно, размышлял о "мере мира". "Точка — это то, что не имеет частей", — говорил он. Современный математик посчитал бы эти слова пусть примитивным, но довольно точным определением "объекта нулевого измерения". Точка, оставленная карандашом на бумаге, острие булавки или башенного шпиля — вот эти "объекты" в реальной жизни. Сфера нулевого измерения — это и есть точка.

3
Нить, проволока и любая иная линия — это уже одномерные предметы: у них есть длина. Сфера в пространстве одного измерения — это две точки на прямой: центр этой одномерной сферы лежит посередине между ними.
Представители двумерного мира имеют и длину и ширину — это ленты, куски ткани, листы бумаги" Окружность, граница двумерного круга — вот что такое сфера в пространстве двух измерений.
И наконец, кубы, пирамиды, дома, корабли и самолеты так же, как и мы с вами, входят в неисчислимую армию "трехмерцев", обладающих вдобавок к длине и ширине еще и высотой. У них есть объем. Сфера в трехмерном пространстве — это шар, "обычная" сфера.
Но вот что любопытно. Проволоку можно сломать, лист бумаги разрезать, а куб распилить. И при этом получается, что одномерная поверхность, линия, разделяется поверхностью нулевого измерения — точкой. Двумерная плоскость делится надвое одномерной линией, а трехмерный куб — двумерной плоскостью. Иными словами, границей "разлома" тела служит какое-то другое тело, измерение которого на единицу ниже.
Что же тогда служит границей четырехмерной сферры? Поистине прав Эйнштейн: оторопь берет, когда пытаешься все это вообразить!

4
Но не будем отчаиваться и зайдем с другого конца.
Если точку "протащить" по бумаге, то получится линия. Линия, в свою очередь, "заметает" плоскость — получается квадрат. Вытянем квадрат из плоскости — сделаем куб. Это уже третье измерение. Но что же такое надо сделать с кубом, чтобы обратить его в четырехмерное тело? И как его себе представить?
А что мы делаем, чтобы изобразить на плоском листе бумаги трехмерный куб? Мы проецируем его на плоскость. Получаются два квадрата один в другом, соединенные вершинами (5). Так спроецируем же и четырехмерный куб! Мы получим по аналогии два куба, один в другом, и снова вершины попарно соединены. Вот он, посланец четвертого измерения, вернее, не сам он, а его проекция на плоскость (6).
Читать дальше