Карл Левитин - Геометрическая рапсодия

Здесь есть возможность читать онлайн «Карл Левитин - Геометрическая рапсодия» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1984, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрическая рапсодия: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрическая рапсодия»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике.
Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии.
Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию.
Научно-художественная книга для широкого круга читателей.

Геометрическая рапсодия — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрическая рапсодия», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Неоплатоники, черпавшие свои мистические воззрения не только у своего учителя, но и из различных восточных религиозных учений, развили представление о реальном мире как о тени, отбрасываемой миром потусторонним. Есть мнение, что само выражение "четвертое измерение" (quarta dimensio) появилось впервые в сочинении английского мистика, кембриджского неоплатоника Мора в его книге "Энхиридион Метафизикум", изданной в 1671 году.

Представители различного рода религиозных культов усердно заселяли четвертое измерение (вообще говоря, с точки зрения строгой геометрии правильнее было бы такое выражение: пространство, имеющее четыре измерения) душами усопших. Верующим сообщались и многочисленные доказательства того, что дело обстоит именно таким образом. При этом мистики иудаизма приводили цитаты из каббалистических книг "Зохар" и "Сефер Ецира", где повествуется о явлении душ умерших в наш мир и о творимых ими чудесах; мусульманские проповедники ссылались на некоторые суры Корана и хадисов — священных преданий; идеологи христианства находили неотразимые, по их мнению, свидетельства в Евангелии и апокрифах — библейских книгах, не признаваемых священными официальной церковью. К примеру, во "Втором Послании апостола Павла к Коринфянам" речь идет о человеке, который был "взят до третьего небосвода", что толковалось как безусловное и очевидное перемещение его в четвертое измерение. В его же "Послании к Эфесянам" говорится о "ширине, длине, глубине и высоте", другими словами, о всех четырех измерениях "мира духов". А в "Откровении Иоанна" — "Апокалипсисе" — сказано, что лично сам Иоанн был "вознесен в духе" и при этом увидел "город четырех-квадратный". Ясное дело, что перед его очами предстал гиперкуб, притом именно четырехмерный!

Нет, не математики или физики виновны в том, что идея четырехмерного пространства дала пищу для всякого рода чертовщины. Забавно: Клейну пришлось публично объяснять, что сделанное им математическое открытие (смысл которого сводится к тому, что узлы замкнутой кривой в пространстве трех измерений могут быть развязаны в пространстве четырех измерений) никакого отношения к "миру духов" не имеет, хотя Цёльнер и ссылался именно на эти работы Клейна. Позже даже Эйнштейну пришлось отмежевываться от разного рода мистических спекуляций на понятиях о четырехмерном пространстве Минковского, кривизне пространства-времени и других рожденных теорией относительности представлениях.

Громя в "Материализме и эмпириокритицизме" махизм за отрицание объективной реальности, В. И. Ленин тоже не обошел вниманием этот вопрос. По его мнению, австрийский физик Мах, пользуясь методами "...молчаливых заимствований у материализма...", совершенно справедливо защищает в своей "Механике" "тех математиков, которые исследуют вопрос о мыслимых пространствах с n измерениями, защищает от обвинений в том, будто они повинны в "чудовищных" выводах из их исследований". И далее В. И. Ленин, цитируя и ссылаясь на Маха, пишет: "Новейшая математика... поставила очень важный и полезный вопрос о пространстве с п измерениями, как о мыслимом пространстве, но "действительным случаем" (ein wirklicher Fall) остается только пространство с 3-мя измерениями... Поэтому напрасно "многие теологи, испытывающие затруднения насчет того, куда им поместить ад", а также спириты пожелали извлечь для себя пользу из четвертого измерения..."

В. И. Ленин назвал "прекрасным аргументом" следующее утверждение Маха: "Акушера такого еще не было... который бы помог родам при помощи четвертого измерения". Но этот аргумент, говорит В. И. Ленин, прекрасен только "...для тех, кто видит в критерии практики подтверждение объективной истины, объективной реальности нашего чувственного мира. Если наши ощущения дают нам объективно верный образ внешнего мира, существующего независимо от нас, тогда этот довод с ссылкой на акушера, с ссылкой на всю человеческую практику, годится. Но тогда весь махизм, как философское направление, никуда не годится".

Геометрическая идея n-мерности, как видим, имеет длительную и бурную философскую предысторию.

С помощью этой идеи и многие другие науки пытались разрешить свои трудности и неясности. Например, протекание электрического тока до открытия электрона некоторые физики объясняли некими четырехмерными вихрями. Существовали одно время представления и о четырехмерной химии. Английский химик Хинтон утверждал, что в молекуле алкоголя С 5Н 12О все пять атомов углерода находятся на одинаковом расстоянии друг от друга, что, разумеется, невозможно в нашем трехмерном мире, но зато легко осуществимо в пространстве четырех измерений. На самом же деле, как теперь известно, структурно молекула алкоголя выглядит так:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрическая рапсодия»

Представляем Вашему вниманию похожие книги на «Геометрическая рапсодия» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрическая рапсодия»

Обсуждение, отзывы о книге «Геометрическая рапсодия» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x