А. П. Карпинский, геолог: "Связь между научным открытием и творчеством в искусстве — несомненна. И то и другое обусловливается вдумчивым наблюдением и изучением действительности, и они идут рядом к общей благородной цели".
А. Е. Арбузов, химик-органик: "Не могу представить себе химика, не знакомого с высотами поэзии, с картинами мастеров живописи, с хорошей музыкой. Вряд ли он создаст что-либо значительное в своей области".
А. А. Потебня, филолог-славист: "Поэзия... не изредка, от времени к времени, а постоянно служит источником науки, которая в свою очередь питает новое поэтическое творчество".
В. И. Вернадский, геохимик, биогеохимик, радиогеолог: "Ученые, натуралисты в том числе, часто бывали и художниками в широком смысле этого слова".
И. И. Мечников, биолог: "Великими мастерами в искусстве становятся люди ученые, владеющие математикой и измерительными методами, как, например, Альберти, Леонардо да Винчи, Микеланджело".
С. В. Ковалевская, математик: "Мне кажется, что поэт должен только видеть то, чего не видят другие, видеть глубже других. И это же должен и математик".
П. Л. Капица, физик: "Наука — дело творческое, как искусство, как музыка".
Эти высказывания, касающиеся науки вообще, а математики лишь в частности, особо применимы к геометрии. Ее внутренняя гармония, строгая и законченная красота не только делают геометрию наукой о фундаментальных свойствах объективного, существующего независимо от нас, нашего сознания мира, но и дают каждому из нас возможность пройти несколько шагов по геометрической стезе. "Если бы только удалось преодолеть то недоверие, с которым весьма многие под влиянием случайных школьных впечатлений сторонятся всего, что связано с математикой, то людей, склонных "импровизировать" в области несложных произведений математического искусства, оказалось бы не меньше, чем активных любителей музыки", — пишут Ганс Радемахер и Отто Теплиц в своей книге "Числа и фигуры".

Попытка преодолеть это недоверие и есть основной мотив предлагаемой вашему вниманию геометрической рапсодии.
Предисловие можно назвать громоотводом.
Георг Кристоф Лихтенберг
Высь, ширь, глубь.
Лишь три координаты.
Мимо них где путь?
Засов закрыт.
Валерий Брюсов

"Мамочка, почему я все время хожу по кругу?" — "отстань, глупышка, а то я приколю к полу и вторую твою ногу!" — так звучит старая детская шутка. Ее, наверное, придумал древний математик, когда был мальчишкой. Повзрослев, он сформулировал ее по-другому: "Окружность — это совокупность точек на плоскости, одинаково удаленных от какой-то одной точки на этой же плоскости". (Взгляните, например, на фрагмент гравюры М. К. Эсхера "Завиток" — вы найдете ее, как и другие работы этого художника, с помощью указателя, помещенного в конце книги. Созданное воображением художника существо использует основное свойство окружности для передвижения.) Подумав немного, древний математик написал еще одну фразу, покороче: "Сфера — это совокупность всех точек, равно удаленных от одной какой-то точки". (Прекрасная иллюстрация на тему "сфера" — еще две гравюры того же автора: "Спирали на сфере" и "Буковый шар".)
С той поры прошло много лет, а новых хороших геометрических шуток не появилось. Создавшееся положение, конечно, беспокоило серьезных ученых, например Исаака Ньютона. Мы бы, вероятно, никогда не узнали об этом, но, по счастью, друг великого математика оксфордский астроном Дэвид Грегори вел дневник. В один из дней 1694 года он подробнейшим образом записал, как они с Ньютоном крупно поспорили: Грегори по обыкновению размышлял вслух на свои небесные темы — в этот раз о том, как звезды различной величины размещаются на небе. И тут вдруг Ньютон перебил его: "Спорим, что тринадцать одинаковых шаров, как их ни расположи, не могут касаться еще одного шара!" Грегори немного подумал и принял спор. Но сколько друзья ни изводили бумаги и слов, ни один из них не убедил другого. И лишь через 180 лет Рейнгольд Хоппе сумел доказать, что великий математик и в этом научном споре оказался прав. Но доказательство Хоппе было таким громоздким, а проблема настолько увлекала ученых, что до самого последнего времени они без устали решали "задачу четырнадцати шаров". Самое простое доказательство придумал англичанин Джон Лич в 1956 году. А в 1962 году в "Трудах Нью-Йоркской Академии наук" появилась большая статья, посвященная все той же задаче.
Читать дальше