"Простые числа Ферма" выражаются простой формулой, придуманной Ферма: 2 2k+1. Вот первые пять таких чисел: 3, 5, 17, 257 и 65 537. Семерка не входит в их число, и потому астрологам придется самим строить свой символ.
В "Математической смеси", переведенной на русский язык книге Литлвуда, есть такая миниатюра:
"Один слишком навязчивый аспирант довел своего руководителя до того, что тот сказал ему: "Идите и разработайте построение правильного многоугольника с 65 537 сторонами". Аспирант удалился, чтобы вернуться через 20 лет с соответствующим построением". Это не совсем анекдот: некто О. Гермес действительно потратил десять лет на такой бессмысленный труд. Рукопись его, заключенная в большой ящик, до сих пор хранится в Геттингенском университете — памятником титанической усидчивости.
Счастье, что руководитель остановился на пятом простом числе Ферма. Возьми он шестое (а вычислить его не так уж трудно: 225+1 = 232+1 = 4 294 967 297), бедняга аспирант до конца своих дней не оторвался бы от чертежей. И дело не в гигантской величине числа сторон. Оказалось, что Ферма ошибался: "шестое простое число Ферма" не постое, а составное: оно разлагается на множители.
Доказать это удалось Леонарду Эйлеру.
"Эйлер... не проглядел ничего в современной ему математике, хотя последние 17 лет своей жизни он был совершенно слепым", — писал один известный историк математики. Не проглядел Эйлер и проблемы многогранников. Если бы Евклид и в самом деле хотел написать многотомное сочинение о Платоновых телах, ом все равно не мог бы сделать этого, не зная формулы Эйлера, с которой мы уже встречались. А ведь она даже проще, чем знаменитый "Понст асинорум" — "Мост для ослов", не преодолев который, нельзя, по мнению Евклида, считать себя разумным человеком (перейдите ради самоутверждения через него и вы: докажете, что углы при основании равнобедренного треугольника равны)! "Некоторые из его простейших открытий таковы, — писал про Эйлера Г. С. М. Коксетер, один из крупнейших современных геометров, — что можно представить себе дух Евклида, вопрошающий: "Почему при жизни на Земле я не додумался до этого?" Но когда слышишь именно эту формулу, то досада "почему не я?!" Невольно берет любого.
Послушайте:
"В любом простом выпуклом многограннике число вершин плюс число граней и минус число ребер равно двум".
Проверьте(еще раз):
на тетраэдре, кубе, октаэдре, на любой фигуре, которую способно измыслить ваше воображение, — с прямо- или криволинейными ребрами, с какими угодно гранями (только без "дыр" — это и значит "простой" многогранник).
Убедитесь(окончательно):
формула Эйлера В+Г-Р = 2 справедлива в любом случае.

12
Эта прославленная формула не связана, как мы имели случай увериться, ни с расстояниями, ни с углами, она предельно наглядна. Она буквально видна в прозрачном воздухе геометрического сада. Но эта простота и наглядность — отражение фундаментальных свойств нашего трехмерного пространства. Именно из-за своей фундаментальности формула эта стала основой для двух математических дисциплин — топологии и теории графов.
Заставим же ее поработать и на нас — выясним, наконец, почему Платоновых тел пять, а не три или восемь.
"В геометрию нет царского пути!" — услышал Птолемей I, когда потребовал, чтобы Евклид обучил его своей науке как-нибудь побыстрее. А уж в наше время и вовсе нет иного способа понять некоторые геометрические вещи, кроме пристального размышления над ними. В этом и объяснение и оправдание тех крайне, впрочем, простых формул, к которым нам придется прибегнуть, чтобы ответить на только что поставленный вопрос. "Понимание математики не приобретается только безболезненно развлекательными способами", — писал Рихард Курант, крупный американский ученый, иностранный член нашей Академии наук, эмигрировавший в Америку из Германии, когда там к власти пришел Гитлер.
Правильный многогранник тем и правилен, что каждая грань его правильный р-угольник и в каждой вершине сходится одно и то же число q таких граней. (Математики обозначают это обстоятельство символом Шлефли — {p, q}) Отсюда следует, что число всех ребер, которые составляют "каркас" платонова тела (иными словами, число планок, которые пришлось заготовить Леонардо да Винчи для каждой из своих моделей), можно подсчитать двояким путем. Оно равно произведению числа всех вершин на число сходящихся к каждой из них ребер q, поделенному пополам, — ведь при таком подсчете мы каждое ребро учитываем дважды, по одному разу каждый его конец. Но, с другой стороны, те же ребра можно пересчитать Платонову телу и по-другому, помножив число его граней на число сторон каждой грани р и опять — по той же причине — разделив эту цифру на Два. Если подставить теперь полученные соотношения в формулу Эйлера и несколько поразмыслить над получившимся результатом, то мы как раз и докажем утверждение Евклида: Платоновыми телами могут быть лишь многогранники, символы Шлефли которых — {3,3}; {4,3}; {3, 4}; {5,3} и {3,5}. Итого-пять! Четыре из них Мауриц Эсхер соединил в удивительную конструкцию, внутреннюю часть которой составляет куб с прошедшим сквозь него октаэдром, а наружная "оболочка" — это взаимопроникшие икосаэдр (светлые треугольные грани) и додекаэдр (его грани более темные, пятиугольные). Называется эта конструкция "Стереометрические фигуры". Отсутствующий на ней тетраэдр художник изобразил на гравюре "Двойной планетоид". Там их даже целых два: один прошел сквозь другой, причем первый "цивилизован", а второй остался в первозданном, диком виде.
Читать дальше