Карл Левитин - Геометрическая рапсодия

Здесь есть возможность читать онлайн «Карл Левитин - Геометрическая рапсодия» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1984, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрическая рапсодия: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрическая рапсодия»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике.
Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии.
Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию.
Научно-художественная книга для широкого круга читателей.

Геометрическая рапсодия — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрическая рапсодия», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но куда интереснее другое свойство — связность. Если квадрат полоснуть бритвой от стороны к стороне, то он, естественно, распадается на два отдельных куска. Точно так же любой удар ножом разделит яблоко на две части. Но вот чтобы располовинить кольцо, нужно уже два разреза. И два раза придется резать бублик, если вы хотите угостить им двух друзей. А телефонный диск можно десять раз рассечь ножом от одной замкнутой кривой до другой, а он все останется единым целым. Поэтому любой тополог скажет вам, что квадрат и ромашка — односвязны, кольцо и оправа от очков — двусвязны, а всяческие решетки, диски с отверстиями и подобные сложные фигуры — многосвязны. Ну а наш лист Мёбиуса? Конечно, двусвязен, ведь фокус в том и состоял, что, будучи разрезан вдоль, он превращался не в два отдельных кольца, а в одну целую ленту. Впрочем (и на этом тоже были построены фокусы), если перекрутить ленту на два оборота, то лист становится односвязным. Три оборота — помните ленту, завязавшую саму себя в узел? — связность снова равна двум. А четыре оборота? Да вы, верно, уже догадались, как дальше станут развиваться события.

Связность принято оценивать числом Бетти, названным так в честь известного итальянского математика и физика. Иногда пользуются другой величиной — эйлеровой характеристикой — с той же целью: определить число сквозных, от края и до края, разрезов, которое выдерживает фигура, не распадаясь при этом на части,

"От края и до края..." — эти слова из песни, любимой нами с детства, можно рассматривать не просто как поэтический образ. В них, как мы видим, заложен еще и глубокий топологический смысл. Лист бумаги — модель двусторонней односвязной (число Бетти равно единице) поверхности с одним краем. Его можно смять и бросить в урну, но все равно число краев (и сторон) останется прежним. Но у сферы краев нет. Нет их и у тора, говоря попросту, бублика. Зато нарисованное на бумаге кольцо имеет целых два края. Один край и у мёбиусова листа, как одна у него сторона. И снова — сделайте его из какой угодно эластичной резины и растяните до любых размеров — топологические свойства, этот незыблемый фундамент самого естества геометрической фигуры, останутся неизменными.

10 Не много ли неожиданных и странных свойств Тогда еще только два быть - фото 36

10

Не много ли неожиданных и странных свойств? Тогда еще только два, быть может, самых любопытных.

Первое — ориентированность. Конечно, можно было бы подробно рассказать, что это такое. Но лучше дать определение "от противного": это то, чего нет у листа Мёбиуса! Вообразите, что в нем заключен целый плоский мир, где есть только два измерения, а его обитатели — несимметричные рожицы, не имеющие, как и сам лист, никакой толщины. Если эти несчастные создания пропутешествуют по всем изгибам листа Мёбиуса и вернутся в родные пенаты, то с изумлением обнаружат, что превратились в свое собственное зеркальное отображение. Конечно, все это случится только, если они живут в листе, а не на нем.

Впрочем, это удивительное явление можно наблюдать и на действующей модели плоского мира Мёбиуса — для этого надо сделать ленту из любого прозрачного материала.

11 И наконец то что носит название хроматический номер Он равен - фото 37

11

И наконец, то, что носит название "хроматический номер". Он равен максимальному числу областей, которые можно нарисовать на поверхности так, чтобы каждая из них имела общую границу со всеми другими. Если каждую такую область выкрасить по-разному, то любой цвет должен соседствовать с любым другим. Так вот, на листке бумаги, даже если его склеить в кольцо, еще никому не удалось расположить пять цветных пятен любой формы, которые имели бы всеобщую границу. И на сфере, и на цилиндре их может быть не более четырех. Это и значит, что хроматический номер этих поверхностей — четыре. А на бублике число соседствующих цветов равняется семи. Каков же хроматический номер листа Мёбиуса? Он, как это ни поразительно, равен шести.

Конечно же, такое не укладывается в голове. Ну в самом деле, не довольно ли этих мёбиусовских мистификаций? Видите ли, на ленте, склеенной, как положено, размещается всего четыре цвета, а стоит соединить ее концы шиворот-навыворот — и непонятно, как находится место еще для двух цветов! Но клин выбивают клином, одну головоломку — другой. Есть древняя неразрешимая задача. Надо соединить три дома с тремя колодцами, но так, чтобы жители каждого из домов могли ходить по воду в любой колодец и при этом пути их нигде не пересекались. Сделать этого не умудрился никто, но лишь сравнительно недавно математики строго доказали, что задача неразрешима (неразрешима на плоскости, а на торе, то есть бублике, например, все получается просто). А теперь взгляните на рисунок (10). Если склеить эту полоску бумаги так, чтобы совпали одинаковые буквы на ее краях, то проблема водоснабжения решается. Разумеется, вы снова получите все тот же лист Мёбиуса. А теперь раскрасьте карту путей водовозов — и вот вам шесть цветов, живущих в дружном соседстве. Но, конечно, как и раньше, надо предполагать, что все события происходят не на листе, а внутри него. Иными словами, краски должны проникать сквозь бумагу, как чернила сквозь промокашку.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрическая рапсодия»

Представляем Вашему вниманию похожие книги на «Геометрическая рапсодия» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрическая рапсодия»

Обсуждение, отзывы о книге «Геометрическая рапсодия» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x