Будь Нётер мужчиной, она естественным образом перешла бы в этот момент на следующую ступень академической карьеры – получила постоянный академический пост. Но путь хабилитации женщинам был закрыт, и Нётер пришлось на протяжении семи лет работать в Эрлангене бесплатно. При этом она помогала отцу, ставшему к тому времени инвалидом, и продолжала собственные исследования. Значительное влияние, привлекшее внимание Нётер к более абстрактным методам, оказала серия дискуссий с Эрнстом Фишером, который обсуждал с ней новые методы Гильберта и посоветовал пользоваться ими. Нётер последовала совету – с впечатляющим успехом, – и последствия этого заметны во всей ее дальнейшей карьере.
Математика в то время все же начинала открываться для женщин, и Нётер приняли в несколько крупных математических обществ, что стало поводом для визита в Вену – и воспоминаний внука Мертенса. В Эрлангене она руководила двумя аспирантами, хотя формально руководителем их подготовки значился ее отец. Затем Гильберт и Клейн пригласили ее в Гёттинген, давно ставший признанным мировым центром математических исследований. Шел 1915 г., и Гильберт, впечатленный теорией относительности Эйнштейна, все больше внимания уделял математической физике. Теория относительности зиждется на математических инвариантах, хотя и в более аналитическом контексте, чем те алгебраические инварианты, которые прежде изучали Гордан, Гильберт и Нётер. Речь идет о дифференциальных инвариантах, включающих в себя и те, что успели к тому моменту стать фундаментальными физическими понятиями, такие как кривизна пространства.
Гильберту нужен был специалист по инвариантам, и Нётер идеально подходила под его требования. За короткое время она решила две ключевые задачи. Во-первых, нашла метод нахождения всех дифференциальных ковариант для векторных и тензорных полей на Римановом многообразии – по существу, выяснила, какие еще величины ведут себя как Риманов тензор кривизны. Выяснить это было необходимо, поскольку Эйнштейнов подход к физике основывался на принципе «относительности», по которому законы, выраженные в любой системе отсчета, движущейся с постоянной скоростью, должны быть одинаковы для любого наблюдателя. Следовательно, законы эти должны быть инвариантны относительно группы преобразований, определяемых движущимися системами отсчета. Естественной группой симметрии для специальной теории относительности является группа Лоренца, определяемая преобразованиями, в которых пространство и время смешиваются, зато скорость света остается постоянной, придавая теории относительности ее неповторимый аромат. Нётер доказала, что каждое «инфинитезимальное преобразование» из группы Лоренца порождает соответствующую теорему о сохранении.
* * *
Мы можем оценить идеи Нётер в более знакомом контексте Ньютоновой механики, где они также применимы и позволяют многое понять. Классическая механика может похвастать несколькими законами сохранения, самым известным из которых является закон сохранения энергии. Механическая система – это любое множество тел, которые движутся с течением времени в соответствии с Ньютоновыми законами движения. В таких системах существует понятие энергии, которое принимает несколько различных форм: кинетическая энергия, связанная с движением; потенциальная энергия, возникающая в результате взаимодействия с гравитационным полем; энергия упругости, содержащаяся, к примеру, в сжатой пружине, и другие. Закон сохранения энергии гласит, что при отсутствии трения в системе, как бы она ни двигалась (если движение происходит в соответствии с законами движения Ньютона), полная энергия остается неизменной – сохраняется. Если трение присутствует, то кинетическая энергия переходит в энергию другого вида – в тепло, и опять же полная энергия сохраняется. Тепло – это в действительности кинетическая энергия колеблющихся молекул вещества, но в математической физике оно моделируется иначе, через энергию твердых тел, стержней и пружин, так что ее интерпретация отличается от интерпретации остальных упомянутых типов энергии. Среди других законов сохранения в классической механике – закон сохранения импульса (масса, умноженная на скорость) и момента импульса (мера вращения, формальное определение которой нам здесь не нужно).
Благодаря Галуа (глава 12) и его последователям понятие симметрии удалось отождествить с инвариантностью относительно групп преобразований – наборов операций, которые могут производиться над некоторой математической структурой, оставляя эту структуру практически неизменной. Уравнение обладает симметрией, если некоторое такое преобразование, приложенное к одному из решений этого уравнения, всегда выдает другое его решение. Законы физики, выраженные в виде математических уравнений, обладают множеством симметрий. Ньютоновы законы движения, к примеру, обладают симметриями Евклидовой группы, в которую входят все жесткие перемещения пространства. Кроме того, они симметричны относительно переноса времени – измерения времени от другого начального момента, а в некоторых случаях и относительно отражения времени – изменения направления течения времени на обратное.
Читать дальше
Конец ознакомительного отрывка
Купить книгу