Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Главную ценность книга Гильберта представляла не как учебник – Евклид к тому времени успел основательно выйти из моды, – а как стимул, вызвавший лихорадочную активность в деле исследования логического фундамента математики. Американские математики, в частности, были особенно заметны на переднем плане этой волны, из которой чуть позже родился своеобразный логико-математический гибрид – метаматематика. В каком-то смысле это математика в приложении к самой себе – или, точнее говоря, к собственной логической структуре. Математическое доказательство может рассматриваться не просто как процесс, раскрывающий новые математические закономерности, но как самостоятельный математический объект. В самом деле, именно этот аспект – глубокая самоотносимость – инициировал процесс разрушения Гильбертовой мечты. В ноябре того же года, можно сказать, рванула настоящая бомба – вышла статья молодого логика по имени Курт Гёдель (глава 22). В ней содержались доказательства двух ошеломляющих теорем. Во-первых, если математика непротиворечива, то доказать это невозможно. Во-вторых, в математике существуют утверждения, которые невозможно ни доказать, ни опровергнуть. Математика изначально неполна, ее логическая непротиворечивость не может быть установлена, а некоторые задачи по-настоящему невозможно решить.

Говорят, Гильберт был «очень сердит», когда впервые узнал о работе Гёделя.

* * *

Рассказ о влиянии Гильберта на науку не может быть полным без упоминания о Гильбертовых проблемах – списке из 23 крупных открытых вопросов и областей математики, представленном им на Втором Международном конгрессе математиков в Париже в 1900 г. Этот перечень подготовил почву для значительной доли математических исследований XX в. Среди названных Гильбертом задач – доказательство непротиворечивости математики, довольно неопределенный запрос на аксиоматический разбор физики, вопросы о трансцендентных числах, гипотеза Римана, самый общий закон взаимности для любого числового поля, алгоритм проверки существования решений диофантовых уравнений и разные технические вопросы геометрии, алгебры и математического анализа. Десять из 23 вопросов полностью решены, три остаются нерешенными, несколько вопросов сформулированы слишком расплывчато, чтобы можно было понять хотя бы, как должно выглядеть их решение, и два вопроса не имеют решения в принципе.

Конечно, математика после Гильберта состояла не только из тех, кто пытался решить его 23 проблемы, но следует признать, что следующие полвека такие люди оказывали существенное, и в основном положительное, влияние на развитие математики. Для человека, который хотел бы выдвинуться и произвести впечатление на коллег-математиков, решение одной из Гильбертовых проблем было одним из лучших способов сделать это.

С возрастом интерес Гильберта к математической физике заметно усилился, как часто бывает у математиков: многие начинают свою карьеру с теоретической математики и с течением времени постепенно дрейфуют к лагерю прикладников. К 1909 г. он работал над интегральными уравнениями, в результате чего возникло понятие Гильбертова пространства – одно из фундаментальных понятий квантовой механики. Кроме того, в статье 1915 г., опубликованной за пять дней до выступления Эйнштейна, он вплотную подошел к открытию Эйнштейновых уравнений общей теории относительности и заявил вариационный принцип, из которого, собственно, и следует уравнение Эйнштейна. Однако само уравнение он не записал.

Обычно Гильберт был доброжелателен в общении и не жалел похвалы за хорошо сделанное дело; однако он мог быть безжалостен, когда кто-то высказывал бессмысленные банальности или пытался лгать ему. На семинарах, если студенту не давался какой-то момент, который, как казалось самому Гильберту, не должен был вызывать затруднений, он говорил: «Но это же совсем просто!» – и находчивый студент, не задерживаясь, переходил к следующему вопросу. В 1920-е гг. Гильберт организовал Математический клуб, который собирался еженедельно и был открыт для всех. В его клубе выступали многие известные математики, которым Гильберт советовал представлять слушателям «только самые изюминки». Если выступающий углублялся в сложные расчеты, Гильберт обычно прерывал его словами: «Мы здесь не затем, чтобы проверять все эти значки».

Со временем, однако, он стал менее терпимым. Александр Островский рассказывал, что однажды, когда кто-то из гостей прочел прекрасную лекцию о действительно важном и красивом исследовании, Гильберт кисло задал ему всего один вопрос: «Ну и зачем все это?» Когда блестящий американец Норберт Винер, пустивший в оборот термин «кибернетика», выступал в клубе, после лекции все, как было принято, отправились ужинать. Гильберт начал рассказывать о прежних гостях клуба и сказал, что качество выступлений раз от разу снижается. В наше время, сказал он, люди по-настоящему обдумывали и содержание лекции, и представление ее, но нынче молодые люди, как правило, выступают слабо. «В последнее время особенно, – сказал он. – Но сегодня был исключительный случай…»

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x