Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возможно, сегодня мы не станем заходить так далеко, но в то время такое заявление было вполне оправданным.

* * *

Гильберт, как правило, работал 5–10 лет в одной области, решал в ней крупные задачи, доводил все до совершенства, а затем уходил на новые «угодья», иногда совершенно забывая, что когда-то изучал эту тему. Однажды он заметил, что занимается математикой потому, что в ней, если что-то забудешь, всегда можно вывести это заново. Математик до мозга костей, теперь он «покончил» с алгебраической теорией чисел. И двинулся дальше. Его студенты, которых он из года в год бомбардировал лекциями об алгебраических числах, были поражены, когда выяснилось, что в следующем году темой лекций Гильберта будут начала геометрии. Гильберт возвращался к Евклиду.

Как всегда, у Гильберта были на то свои резоны, и опять же ключевой вопрос можно было сформулировать так: «Да, конечно, но о чем это на самом деле ?» На этот вопрос Евклид дал бы ответ «о пространстве»; именно поэтому он все свои теоремы иллюстрировал геометрическими чертежами. Гильберта, однако, гораздо больше интересовала логическая структура аксиом геометрии и как из них проистекают теоремы, часто далеко не очевидные. Его также не устраивал у Евклида список аксиом, поскольку использование чертежей привело Евклида к некоторым допущениям, которые он не сформулировал явно.

Простой пример – утверждение «прямая, проходящая через точку, которая лежит внутри окружности, обязательно с этой окружностью пересекается». На чертеже это выглядит очевидно, но такое утверждение не является логическим следствием Евклидовых аксиом. Гильберт понял, что аксиомы Евклида неполны, и решил исправить оплошность. Евклид определял точку как «то, что не имеет частей», а прямую – как линию, которая «лежит равномерно по отношению к точкам на ней». Гильберт считал эти утверждения лишенными смысла. Главное, заявлял он, – это как ведут себя эти понятия, а не какой-то мысленный образ того, что они собой представляют. «Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках», – говорил Гильберт коллегам. В частности, рисунки были вне игры.

Разумеется, этот проект Гильберта был тесно связан с более глубоким вопросом, который к тому моменту уже был понятен ученым, – вопросу неевклидовых геометрий и аксиомы о параллельных (глава 11). Гильберт пытался установить базовые принципы аксиоматического рассмотрения математических тем. Среди этих тем были непротиворечивость (отсутствие логических противоречий) и независимость (чтобы никакая аксиома не была следствием из других аксиом). Также весьма желательны были полнота (не упустить ничего важного) и простота (по возможности). Евклидова геометрия была пробным камнем. С непротиворечивостью все было просто: Евклидову геометрию можно смоделировать при помощи алгебры, применяя ее к координатам ( x, y ) на плоскости. То есть можно начать с обычных чисел и построить на их основе математическую систему, которая будет подчиняться всем Евклидовым аксиомам. Из этого следует, что эти аксиомы не могут противоречить друг другу, поскольку тогда доказательство от противного покажет нам, что построенной модели не существует . У этого рассуждения, однако, имеется один потенциальный недостаток, и Гильберт с самого начала понимал это. При этом предполагалось, что стандартная числовая система непротиворечива сама по себе; что арифметика состоятельна – именно это математики имеют в виду, когда говорят «существует». Каким бы очевидным это ни казалось, никто и никогда в реальности этого не доказывал. Позже Гильберт попытался устранить этот пробел, но сам об этом пожалел.

Результатом этой работы стала лаконичная и элегантная книга «Основания геометрии», опубликованная в 1899 г. В ней Евклидова геометрия выводилась из 21 явно сформулированной аксиомы. Три года спустя Элиаким Мур и Роберт Мур (не родственники) доказали, что одну из этих аксиом можно вывести из остальных, так что на самом деле достаточно 20 аксиом. Гильберт начал с шести простейших понятий: это объекты «точка», «прямая», «плоскость» и отношения «между», «лежит на» и «конгруэнтный». Восемь аксиом разбирают отношения инцидентности между точками и прямыми, такие как «любые две различные точки лежат на одной прямой». Четыре аксиомы (которые Евклид, пользуясь чертежами, принял по умолчанию, без явной формулировки) говорят о порядке точек на прямой. Еще шесть разбирают вопросы конгруэнтности (отрезков прямых и треугольников; слово «конгруэнтный» по существу означает «такой же по форме и размеру»). Далее идет Евклидова аксиома о параллельных, в необходимости включения которой уже не сомневался ни один компетентный математик. Наконец, были еще две тонкие аксиомы о непрерывности, согласно которым точки на прямой соответствуют действительным числам (а не, скажем, рациональным, ведь тогда прямые, очевидно пересекающиеся на чертеже, могут позабыть сделать это в рациональной точке).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x