Чуть более сложные структуры вводят в действие полный спектр арифметических операций. Я уже упоминал кольцо. Существует также поле, в котором помимо всего прочего возможно деление. Строгое развитие такого абстрактного взгляда представляет сложности, и к нему приложили руку многие видные математики. Часто неясно, кто и что сделал первым. К тому моменту, когда разобрались со строгими определениями, большинство математиков уже довольно четко понимали, что происходит. Но, если разобраться, всем этим подходом мы обязаны Нётер, которая всегда подчеркивала необходимость аксиоматического подхода ко всем математическим структурам.
В 1924 г. в ее круг вошел голландский математик Бартель Ван дер Варден, который стал главным распространителем ее подхода, кратко изложенного в его книге «Современная алгебра» 1931 г. К 1932 г., когда Нётер выступила на пленарном заседании Международного конгресса математиков, ее алгебраические достижения были признаны во всем мире. Она была спокойна, скромна и великодушна. Позже в некрологе Ван дер Варден так подвел итог ее деятельности:
Максиму, которой Эмми Нётер всегда руководствовалась в своей работе, можно было бы сформулировать так: любые отношения между числами, функциями и операциями становятся прозрачными, широко применимыми и полностью продуктивными только после того, как их изолируют от конкретных объектов и сформулируют как корректные общие понятия.
* * *
Нётер думала не только об алгебре. Она привнесла свое видение и в топологию. Для ранних топологов топологический инвариант представлял собой комбинаторный объект, такой как множество независимых циклов – замкнутых петель с определенными свойствами. Пуанкаре, введя понятие «гомотопия», начал процесс добавления туда дополнительной структуры. Когда Нётер выяснила, чем занимаются топологи, она сразу же обратила внимание на то, что они упустили из виду фундаментальную абстрактную алгебраическую структуру. Циклы – это не просто такие штуки, которые можно пересчитать: если подойти к вопросу аккуратно, их можно превратить в группу. Комбинаторная топология стала алгебраической топологией. Точка зрения Нётер немедленно приобрела сторонников, наиболее активными среди которых были Хайнц Хопф и Павел Александров. Аналогичные идеи независимо посетили Леопольда Виториса и Вальтера Майера в Австрии в 1926–1928 гг., в результате чего они определили гомологическую группу – базовый инвариант топологического пространства. Алгебра приняла эстафету у комбинаторики, вскрыв куда более богатую структуру, чем те, что могли бы использовать топологи.
В 1929 г. Нётер посетила МГУ, где она работала с Александровым и преподавала абстрактную алгебру и алгебраическую геометрию. Хотя она никогда и не проявляла политической активности, частным образом высказывалась в поддержку русской революции, поскольку та открывала огромные возможности в физике и математике. Это не слишком нравилось властям, и, когда студенты пожаловались на присутствие рядом еврейки, симпатизирующей марксистам, Нётер попросту выставили из университетской квартиры.
В 1933 г., когда нацисты уволили из университета всех преподавателей-евреев, Нётер поначалу попыталась устроиться в Москве, но потом воспользовалась помощью фонда Рокфеллера и переехала в США в Брин-Морский университет. Кроме того, она читала лекции в Институте высших исследований в Принстоне, но жаловалась, что даже в Америке чувствует себя некомфортно в «мужском университете, где ничто женское не принимается».
Несмотря на это, ей нравилось в Америке, но прожила она там недолго. Нётер умерла в 1935 г. от осложнений после онкологической операции. Альберт Эйнштейн написал в письме в The New York Times :
По мнению самых компетентных из ныне здравствующих математиков, фрейлейн Нётер была самым значительным творческим математическим гением из всех тех, что появились с начала высшего образования для женщин и до сего дня. В царстве алгебры, где на протяжении столетий работали самые даровитые математики, она открыла методы, оказавшиеся невероятно важными для развития нового сегодняшнего поколения математиков.
И не только: она вступила в борьбу с мужчинами на их собственном поле – и выиграла.
21. Человек формулы. Сриниваса Рамануджан
Шел январь 1913 г. Турция уже воевала на Балканах, а Европа все глубже и глубже втягивалась в конфликт. Годфри Харольд Харди, профессор математики в Кембриджском университете, презирал войну; и он очень гордился тем, что область его профессиональной деятельности – теоретическая математика – не имеет военного применения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу