Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Недюжинный ум мальчика проявился очень быстро. Когда ему было три года, отец однажды раздавал при нем плату работникам. Внезапно маленький Карл подал голос: «Нет, папа, это неправильно, должно быть…» Пересчет показал, что малыш был прав. Осознав потенциальные способности сына, родители Гаусса предприняли серьезные усилия, чтобы помочь ему развить их. Когда Гауссу было восемь лет, учитель Бюттнер в школе задал классу арифметическую задачу. Часто говорят, что он велел детям сложить все числа от 1 до 100, но это, вероятно, упрощение. Реальная задача, скорее всего, была сложнее, но в конечном итоге требовала именно этого: сложить большое количество чисел, разделенных равными интервалами. С точки зрения учителя, у такого примера есть важное и очевидное достоинство: существует хитрый способ упростить расчет. Не раскрывайте секрета вашим ничего не подозревающим ученикам – и вы надолго, может быть на несколько часов, загрузите их объемными вычислениями, в которых они почти наверняка где-нибудь да ошибутся. Но один восьмилетка посидел за партой несколько секунд, нацарапал на своей грифельной доске одно-единственное число, а затем решительно прошагал к столу учителя и положил перед ним доску лицом вниз. «Ligget se [18] «Вот он [ответ]» (лат.). – Прим. ред. », – проговорил он своим деревенским говорком: «Вот он лежит». Никакого неуважения в этом не было, так в те времена было принято сдавать свой ответ. Другие ученики усердно считали, горка грифельных досок перед учителем медленно росла, а Бюттнер наблюдал за Гауссом, который спокойно сидел за своей партой. Когда же доски были проверены, оказалось, что из всех ответов верен только ответ Гаусса.

Но предположим, что задача действительно была 1 + 2 + 3 + … + 99 + 100. Какой хитрый прием можно здесь использовать? Ну, для начала нужно обладать достаточным воображением, чтобы понять, что такой прием существует. Затем его нужно найти. Этот же прием работает и для более сложных примеров такого рода. Считается, что Гаусс мысленно сгруппировал числа по парам: одно из начала списка, другое из конца. Тогда

1 + 100 = 101,

2 + 99 = 101,

3 + 98 = 101,

и дальше закономерность сохраняется (поскольку в начале списка числа увеличиваются каждый раз на единицу, а в конце при обратном порядке на столько же уменьшаются, компенсируя прибавление) до последней суммы

50 + 51 = 101.

Таких пар 50, каждая дает в сумме 101, так что суммарный итог составит 50 × 101 = 5050.

Ligget se .

* * *

Бюттнер понял, что судьба столкнула его с настоящим гением, и дал Гауссу лучший арифметический текст, какой только смог купить. Мальчик прочел его как роман – и освоил так же быстро. «Он мне не под силу. Я не могу больше ничему его научить», – сказал Бюттнер. Но он мог все же помочь своему протеже-вундеркинду. В 1788 г. Гаусс при помощи Бюттнера и его помощника Мартина Бартельса начал учиться в гимназии, где и приобрел вкус к лингвистике, изучив верхненемецкий и латынь.

Бартельс, знавший в Брауншвейге кое-кого из видных людей, рассказал им о талантах Гаусса. Рассказ о необыкновенном юноше дошел и до ушей герцога Карла-Вильгельма-Фердинанда Брауншвейг-Вольфенбюттельского, и в 1791 г., в возрасте 14 лет, Гаусс был удостоен личной герцогской аудиенции. Он был стеснителен и скромен – и невероятно умен. Герцог, в равной степени очарованный и впечатленный, пообещал выделить деньги на образование мальчика. В 1792 г. Гаусс на деньги герцога поступил в колледж Collegium Carolinum. В колледже его интерес к языкам, особенно классическим, значительно окреп. Герхард заявил, что подобные знания бесполезны в жизни и нечего тратить время на их приобретение, но вмешалась Доротея. Их сын должен получить наилучшее возможное образование, а оно включает в себя и греческий, и латынь. И точка.

Некоторое время Гаусс всерьез интересовался сразу двумя областями – математикой и языками. Он самостоятельно открыл (без доказательств) пять или шесть важных математических теорем, в том числе закон квадратичной взаимности в теории чисел, о котором я расскажу позже, и высказал гипотезу о простых числах, согласно которой количество простых чисел, меньших x , приблизительно равно x /log x . Эту гипотезу независимо друг от друга доказали в 1896 г. Жак Адамар и Шарль де ла Валле-Пуссен. В 1795 г. Гаусс оставил Брауншвейг, чтобы начать учебу в Университете Гёттингена. Его профессор Авраам Кестнер в основном писал учебники и энциклопедии и не занимался исследовательской работой. Гаусс был о нем невысокого мнения и не скрывал этого. Он уже уверенно двигался в направлении карьеры лингвиста, когда боги математики весьма наглядно пришли ему на помощь с семнадцатиугольником.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x