Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Задним числом можно сказать, что обе стороны диспута были отчасти правы. Основная проблема здесь заключается в сходимости ряда: имеет ли бесконечная сумма какое-то определенное разумное значение? Для тригонометрических рядов это довольно тонкий вопрос, осложненный необходимостью рассматривать не одну, а несколько разных интерпретаций «сходимости». Для полного ответа требовалось три ингредиента: новая теория интегрирования, разработанная Анри Лебегом; язык и строгие правила теории множеств, придуманной Георгом Кантором; и радикально новый подход, найденный Бернхардом Риманом. В результате выяснилось, что метод Фурье применим к широкому, но все же не универсальному классу начальных профилей. Физическая интуиция здесь служит хорошим ориентиром, и эти профили вполне годятся для любой разумной физической системы. Но, если подойти строго математически, никогда не следует обещать слишком много, ибо существуют исключения. Так что Фурье был прав по существу, но и его критики тоже были в чем-то правы.

* * *

В 1820-е гг. Фурье одним из первых начал исследования в области глобального потепления. Однако его интересовали не изменения климата, вызванные деятельностью человека; он просто хотел понять, почему на Земле достаточно тепла для поддержания жизни. Чтобы выяснить это, он применил свои знания о теплопроводности к нашей планете. Единственный очевидный источник тепла – излучение, получаемое Землей от Солнца. Часть этого тепла планета излучает обратно в космос, а того, что остается, должно хватать на обеспечение наблюдаемой средней температуры на поверхности. Но этого не хватало. По расчетам Фурье, Земля должна была быть заметно холоднее, чем на самом деле. Фурье сделал вывод, что в этих процессах, видимо, задействованы какие-то другие факторы, и опубликовал в 1824 и 1827 гг. статьи на эту тему. Со временем он решил, что наиболее вероятным объяснением является какое-то дополнительное излучение из межзвездного пространства, и безнадежно в этом ошибся. Однако он предложил (и отверг) также и верное объяснение: что атмосфера может играть роль своеобразного одеяла и удерживать под собой больше тепла, чем уходит в космос.

Вдохновением для него стал эксперимент, который провел геолог и физик Орас-Бенедикт де Соссюр. Исследуя возможность использования солнечных лучей для приготовления пищи, де Соссюр обнаружил, что самым эффективным из всех предложенных им устройств является изолированный ящик, закрытый тремя слоями стекла, разделенными довольно толстыми прослойками воздуха; это устройство могло нагреваться до 110 °C как на теплых равнинах, так и высоко в холодных горах. Следовательно, в механизме нагрева значительную роль играет воздух внутри ящика и действие стекла. Фурье предположил, что атмосфера Земли могла бы, в принципе, действовать примерно тем же манером, что и солнечная печь де Соссюра. Выражение «парниковый эффект», возможно, происходит от этого предположения, но первым его использовал Нильс Экхолм в 1901 г.

В конечном итоге Фурье так и не поверил, что этот эффект и есть искомый источник дополнительного тепла отчасти потому, что ящик полностью исключал конвекцию, за счет которой тепло в атмосфере переносится на большие расстояния. Он не оценил особую роль двуокиси углерода и других «парниковых газов», которые поглощают и испускают инфракрасное излучение таким образом, что тепло попадает в ловушку. Точный механизм достаточно сложен, и аналогия с парником обманчива, поскольку парник работает благодаря тому, что удерживает теплый воздух в замкнутом пространстве.

* * *

Кроме того, Фурье разработал вариант своего уравнения для потока тепла в отдельных областях на плоскости, или в пространстве, используя то, что мы сегодня называем оператором теплопроводности, который сочетает изменения температуры в заданной точке с диффузией тепла в ее окрестности. Со временем математики поняли, как с помощью ряда Фурье можно решить тепловое уравнение для пространств любой размерности. К тому моменту стало уже ясно, что сам метод имеет гораздо более широкую сферу применения – и вовсе не в области теплопередачи, а в радиоэлектронике.

Это типичный пример единства и общности математики. Тот же метод применим к любой функции, не только к профилю распределения теплоты. Метод представляет функцию в виде линейной комбинации более простых компонент, что делает возможной обработку данных и получение информации из некоторого диапазона компонент. К примеру, один из вариантов Фурье-анализа используется для сжатия изображений в цифровых камерах – изображение шифруется в виде комбинации простых графических образов, основанных на функции косинуса, что уменьшает объем памяти, необходимый для их хранения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x