Владимир Арнольд - Теория катастроф

Здесь есть возможность читать онлайн «Владимир Арнольд - Теория катастроф» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1990, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория катастроф: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория катастроф»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория катастроф», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис 29 Сорок восемь типов бифуркаций коразмерности 2 при резонансе 1 4 Еще - фото 30

Рис. 29. Сорок восемь типов бифуркаций коразмерности 2 при резонансе 1 : 4

Еще недавно всякий экспериментатор, обнаружив, скажем, в химической реакции сложные апериодические колебания, отказывался от их исследования, ссылаясь на нечистоту эксперимента, случайные внешние воздействия и т. п. Сейчас уже многим ясно, что эти сложные колебания могут быть связаны с самим существом дела, могут определяться основными уравнениями задачи, а не случайными внешними воздействиями; они могут и должны изучаться наравне с классическими стационарными и периодическими режимами протекания процессов.

7. Особенности границы устойчивости и принцип хрупкости хорошего

Рассмотрим положение равновесия системы, зависящей от нескольких параметров, и предположим, что (в некоторой области изменения параметров) это положение равновесия не бифурцирует.

Будем изображать систему, соответствующую какому-либо значению параметров, точкой на оси значений параметра (на плоскости, если параметров два, в пространстве параметров, если их три, и т. д.).

Изучаемая область в пространстве параметров разобьется тогда на две части в соответствии с тем, устойчиво или нет положение равновесия. Мы получаем таким образом на плоскости (в пространстве) параметров область устойчивости (составленную значениями параметров, при которых равновесие устойчиво), область неустойчивости и разделяющую их границу устойчивости .

Рис 30 Типичная особенность границы двумерной области устойчивости В - фото 31

Рис. 30. Типичная особенность границы двумерной области устойчивости

В соответствии с общей стратегией Пуанкаре (см. п. 5) мы ограничимся семействами систем, зависящих от параметров общим образом. Оказывается, граница устойчивости может иметь особенности, которые не исчезают при малом шевелении семейства.

На рис. 30 изображены все особенности границы устойчивости положений равновесия в общих двупараметрических семействах эволюционных систем (с фазовым пространством любой размерности), на рис. 31 — в трехпараметрических. Формулы на рисунках описывают область устойчивости (при подходящем выборе координат на плоскости или в пространстве параметров, вообще говоря, криволинейных).

Рис 31 Типичные особенности границ трехмерных областей устойчивости Заметим - фото 32

Рис. 31. Типичные особенности границ трехмерных областей устойчивости

Заметим, что область устойчивости во всех случаях располагается "углами наружу", вклиниваясь "зияющими вершинами" в область неустойчивости . Таким образом, для системы, принадлежащей особой части границы устойчивости, при малом изменении параметров более вероятно попадание в область неустойчивости, чем в область устойчивости. Это проявление общего принципа, согласно которому все хорошее (например, устойчивость) более хрупко, чем плохое.

По-видимому, все хорошие объекты удовлетворяют нескольким требованиям одновременно , плохим же считается объект, обладающий хотя бы одним из ряда недостатков.

В случае четырех параметров к перечисленным выше особенностям границы добавляются еще две.

При увеличении числа параметров число типов особенностей границы устойчивости семейства общего положения быстро растет, однако, как доказал Л. В. Левантовский, оно остается конечным (с точностью до гладких замен параметров) при любом конечном числе параметров, сохраняется и принцип хрупкости.

8. Каустики, волновые фронты и их метаморфозы

Один из наиболее важных выводов теории особенностей состоит в универсальности нескольких простых образов вроде складки, сборки и точки возврата, которые должны встречаться повсеместно и которые полезно научиться распознавать. Кроме перечисленных особенностей, часто встречаются еще несколько образов, которые также получили собственные имена: "ласточкин хвост", "пирамида", "кошелек" и др.

Пусть в какой-либо среде распространяется некоторое возмущение (например, ударная волна, свет или эпидемия).

Для простоты начнем с плоского случая. Допустим, в начальный момент времени возмущение имелось на кривой а (рис. 32), и пусть скорость его распространения равна 1. Чтобы узнать, где будет возмущение через время t, нужно отложить по каждой нормали к кривой отрезок длины t. Получающаяся кривая называется волновым фронтом .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория катастроф»

Представляем Вашему вниманию похожие книги на «Теория катастроф» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория катастроф»

Обсуждение, отзывы о книге «Теория катастроф» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x