Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

У большинства из нас в сетчатке три типа колбочек (рецепторов, отвечающих за цветовое зрение). У основной массы людей, страдающих так называемой цветовой слепотой, а также у многих других млекопитающих, в том числе собак и широконосых обезьян, типов колбочек только два, поэтому они видят приблизительно 10 000 оттенков цветов, а не миллион или около того, как все остальные. Однако известны редкие случаи, когда в сетчатке человека удавалось обнаружить четыре рабочих типа колбочек. Такие люди (“тетрахроматы”) способны, по оценкам ученых, различать почти на сто миллионов оттенков больше, чем остальные. Но поскольку им, как и всем нам, свойственно полагать, что цветовое зрение у всех одинаковое, без специального тестирования они могут далеко не сразу осознать свои сверхспособности.

Итак, в определенных обстоятельствах люди могут видеть то, что большинству из нас недоступно. Если есть люди, видящие ультрафиолетовое излучение или различающие больше оттенков цветов, чем другие, то почему не быть и таким, которые могут видеть четвертое измерение? Судя по всему, наш мозг способен научиться обрабатывать сенсорную информацию, которую мы обычно не воспринимаем. Не исключено, что он может также научиться создавать в нашем воображении четырехмерные образы.

Сегодня компьютеры и другие передовые технологии дают нам огромное преимущество в поисках возможности визуализировать мир четырех измерений. Можно легко создать анимацию каркасной модели тессеракта – например, показать, как в процессе вращения меняется его изображение на плоском экране. Наш мозг, конечно, все равно интерпретирует то, что мы видим, как странное поведение сопряженных друг с другом кубов, а не как четырехмерное изображение. И все-таки мы сознаем, что перед нами происходит нечто необычное, что невозможно объяснить с точки зрения привычных трех измерений. Есть ли надежда, что сегодняшние (или завтрашние) технологии позволят нам увидеть четвертое измерение непосредственно?

Существует точка зрения, согласно которой, что бы там ни говорили Хинтон и другие, человек никогда не сможет по-настоящему видеть в четырех измерениях, поскольку весь мир наш безнадежно трехмерен, и мозг наш трехмерен, и весь аппарат, которым снабдила нас эволюция, способен интерпретировать получаемую от органов чувств информацию только в трехмерном контексте. Никакие усилия человеческого разума не смогут переместить частицы, из которых состоят наши тела, в иную плоскость бытия. И никакие чудеса инженерной мысли никогда не позволят нам создать четырехмерный объект, например настоящий тессеракт. Это, впрочем, никогда не останавливало писателей-фантастов, в чьем воображении то и дело возникают всевозможные странные стечения обстоятельств, приводящие к тому, что у обычного трехмерного объекта появляется дополнительное измерение. В рассказе Роберта Хайнлайна “Дом, который построил Тил”, впервые опубликованном в феврале 1941 года в журнале Astounding Science Fiction , изобретательный инженер спроектировал дом, имеющий восемь кубических комнат, расположенных в виде трехмерной развертки тессеракта. К несчастью, вскоре после завершения строительства происходит землетрясение – и дом складывается в реальный гиперкуб, а рискнувшие войти в него оказываются полностью сбитыми с толку происходящими внутри явлениями. В рассказе “Лист Мёбиуса” (1950 года) часть предельно запутанной системы Бостонского метрополитена оказывается в четвертом измерении вместе с поездом и всеми его пассажирами. Правда, в конце концов все благополучно прибывают в пункт назначения. Автор рассказа Армин Джозеф Дейч, астроном Гарвардской обсерватории (в рассказе, кстати, одна из станций метро называется “Гарвард”), обыгрывает тему бутылки Клейна – односторонней поверхности, которая может существовать только в четырех измерениях, – и ленты Мёбиуса.

Художники тоже пытались запечатлеть в своих произведениях суть четырехмерного пространства. В своем опубликованном в 1936 году “Манифесте димензионистов” венгерский поэт и теоретик искусства Карой Тамко-Ширато утверждает, что в результате эволюции искусства “литература покинула линию и вошла в плоскость… Живопись покинула плоскость и вошла в пространство… [а] скульптура вышла из замкнутых, неподвижных форм”. За этим, продолжает Тамко-Ширато, последует “художественное завоевание четырехмерного пространства, до сих пор остававшегося абсолютно лишенным искусства”. Завершенное Сальвадором Дали в 1954 году “Распятие ( Corpus Hypercubus )” объединяет классическое изображение Христа с разверткой тессеракта. В лекции, прочитанной в 2012 году в Музее Сальвадора Дали, геометр Томас Бэнчофф, консультировавший художника по математическим вопросам, связанным с его картинами, объяснял, что Дали пытался взять “объект из трехмерного мира и вынести за его пределы… Целью этого действа было изобразить одновременно две перспективы – два наложенных друг на друга креста”. Подобно ученым XIX века, пытавшимся рационально обосновать спиритуализм наличием бытия в некоем высшем пространстве, Дали использовал идею четвертого измерения, чтобы объединить религиозное с физическим.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x