Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Здесь есть возможность читать онлайн «Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Аттикус, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Восемь этюдов о бесконечности. Математическое приключение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Восемь этюдов о бесконечности. Математическое приключение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Восемь этюдов о бесконечности. Математическое приключение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
В переводе на человеческий язык это означает существует множество не - фото 112

В переводе на человеческий язык это означает «существует множество, не содержащее элементов» [54] Точнее говоря, это выражение читается так: «Существует такое А, что для любого В верно, что В не принадлежит А». .

Предполагалось, что аксиоматическая система будет играть в теории множеств ту же роль, которую играет в геометрии система аксиом Евклида. Однако на деле вышло не совсем так.

В 1938 г. австрийский логик, математик и философ Курт Гёдель доказал, что континуум-гипотезу невозможно опровергнуть , используя аксиоматическую систему Цермело – Френкеля для теории множеств. 25 лет спустя, в 1963 г., Пол Коэн (1934–2007), профессор математики из Стэнфордского университета, продемонстрировал невозможность доказательства континуум-гипотезы на основе аксиом Цермело – Френкеля. Коэн и Гёдель доказали, что континуум-гипотезу невозможно ни доказать, ни опровергнуть. В результате оказалось, что вопрос об истинности континуум-гипотезы не может быть решен исходя только из аксиом ZF. Так явилось на свет первое «неразрешимое» утверждение.

В старом Евклидовом мире действовала Аристотелева логика, предполагавшая лишь два варианта правильности утверждения: оно могло быть либо истинным (Т), либо ложным (F). Теперь у нас появился третий вариант: утверждение может быть неразрешимым (U) [55] T – сокр. англ. true («истинный»), F – false («ложный»), U – undecidable («неразрешимый»). .

Очевидно, можно спросить: не вызвана ли эта проблема с неразрешимыми утверждениями тем, что в системе Цермело – Френкеля не хватает каких-нибудь аксиом? Вполне может быть так, что существует еще одна «очевидно истинная» концепция, пока не открытая, добавление которой к системе ZF позволит доказать СН. Или, если рассматривать этот вопрос с еще более оптимистической точки зрения, можно ли усовершенствовать ZF какими-нибудь дополнительными аксиомами так, чтобы все утверждения стали разрешимыми в этой системе?

В 1931 г. Гёдель, которому было тогда всего 25 лет, выдвинул три теоремы – одну о полноте и две о неполноте, – которые рассматривают общий случай неразрешимых утверждений. Суть первой теоремы о неполноте сводится к тому, что в какой бы системе аксиом мы ни работали, если эта система достаточно развита, чтобы порождать натуральные числа, в ней всегда существуют неразрешимые утверждения {32} 32 У такой системы должны быть и другие естественные свойства, которыми обладает система ZF. . Такое ограничение того, чего можно было бы ожидать от аксиоматической системы, было непредвиденным.

Эти три теоремы настолько потрясли математический мир, что споры о их сути продолжаются и по сей день. Эта интереснейшая тема, несомненно, заслуживает отдельного рассмотрения.

На протяжении более чем полувека математики, работающие в области аксиоматической теории множеств, пытались найти «недостающую аксиому» (или аксиомы). Успеха никто из них не добился. Сейчас большинство специалистов в этой области считают, что никаких недостающих аксиом нет, и правильный подход к этому вопросу заключается в рассмотрении взаимосвязей между разными аксиомами. Можно, конечно, принять за аксиому саму континуум-гипотезу, но тут важно помнить, что аксиомы должны быть сформулированы так, чтобы в их справедливость было легко поверить, а в случае континуум-гипотезы это требование явно не выполняется.

В 2006 г. (за год до смерти) Пол Коэн прочитал интереснейшую лекцию о континуум-гипотезе на конференции в честь Гёделя, проходившей в Вене. Его лекцию (в шести частях) можно найти на YouTube по запросу: Paul Cohen part 1 of 6, Centennial, Vienna.

Тем временем в геометрии восстали из пепла некоторые интересные теории относительно невозможности обоснования пятого постулата при помощи евклидовой аксиоматической системы. В XIX в. были разработаны две другие геометрические системы, которые считаются неевклидовыми геометриями. Первая из них (гиперболическая геометрия [56] Она же геометрия Лобачевского. ) предполагает, что через точку А , не лежащую на прямой m , можно провести более одной прямой, не пересекающей прямую m . Вторая (эллиптическая геометрия [57] Она же геометрия Римана. ) предполагает, что через точку А, не лежащую на прямой m, невозможно провести ни одну прямую, не пересекающую прямую m .

Подобно тому, как попытки обоснования пятого постулата в евклидовой геометрии привели к появлению в геометрии новых, неевклидовых теорий, обоснование континуум-гипотезы также дало толчок развитию неканторовой теории множеств, не предполагающей континуум-гипотезы. Честно говоря, неканторовых теорий существует много, потому что в последние годы математики, применяя предложенный Полом Коэном систематический метод «форсинга», доказали неразрешимость многих еще не решенных классических открытых проблем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Восемь этюдов о бесконечности. Математическое приключение»

Представляем Вашему вниманию похожие книги на «Восемь этюдов о бесконечности. Математическое приключение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение»

Обсуждение, отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x