Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Здесь есть возможность читать онлайн «Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Аттикус, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Восемь этюдов о бесконечности. Математическое приключение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Восемь этюдов о бесконечности. Математическое приключение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Восемь этюдов о бесконечности. Математическое приключение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Почему? В этом случае число (–1), стоящее на месте а , – это алгебраическое число, не равное ни 0, ни 1. На месте b стоит число, и это действительно число алгебраическое ( i – корень уравнения x ² + 1 = 0) и иррациональное.

Эту прекрасную теорему независимо друг от друга доказали в 1934 и 1935 гг. русский математик Александр Гельфонд и немецкий математик Теодор Шнайдер. Теорема Гельфонда – Шнайдера дала ответ на вторую часть седьмой проблемы из списка 23 нерешенных математических задач, который Гильберт представил в 1900 г. Международному конгрессу математиков, собравшемуся в Парижском университете – Сорбонне.

Таким образом, мы знаем, что оба числа 2 √2и e π = e i π(– i ) = (–1) – i трансцендентны. С двумя числами мы разобрались, осталось бесконечное количество других.

Континуум-гипотеза и недостающая аксиома

Мы уже знаем, что мощность множества вещественных чисел больше мощности множества натуральных чисел. Но насколько она больше? И почему мы обозначаем ее ℵ? Почему бы не сказать, что кардинальное число множества вещественных чисел равно ℵ 1? Казалось бы, такое обозначение было бы естественным продолжением ℵ 0.

Как мы уже говорили, тот факт, что множество несчетно, не всегда означает, что его мощность равна ℵ. Отсюда возникает естественный вопрос: существуют ли множества чисел, мощность которых больше, чем ℵ 0, но меньше, чем ℵ? В 1877 г. именно этим вопросом задался Георг Кантор.

В математике умение поставить вопрос должно цениться выше, чем умение разрешить его.

Георг Кантор

Кантор считал, что множеств, мощность которых больше, чем ℵ 0, но меньше, чем ℵ, не существует. Другими словами, он предположил, что мощность множества вещественных чисел есть ℵ 1. Эта гипотеза известна под названием «континуум-гипотеза».

КОНТИНУУМ-ГИПОТЕЗА (CH) [53] Принятое обозначение (сокр. англ . Continuum Hypothesis).

Не существует множества с мощностью, строго промежуточной между мощностью множества целых чисел, ℵ 0, и мощностью множества вещественных чисел, ℵ.

В течение многих лет и несмотря на огромные усилия математики не могли ни доказать, ни опровергнуть эту гипотезу. В знаменитом Гильбертовом списке 23 наиболее важных открытых проблем в математике она стояла первой.

Чтобы понять то историческое событие, которое привело к решению проблемы СН, нам нужно сделать шаг назад и посмотреть, что происходило в то время в геометрии. Как вы помните, геометрия по большей части основывается на системе аксиом (они же постулаты), разработанной Евклидом более 2000 лет назад и до сих пор применимой в том, что можно назвать «базовой» геометрией. Несмотря на древность этой системы, существовала давняя открытая проблема, касающаяся пятого постулата Евклида, «аксиомы параллельности прямых». Этот постулат гласит: если на плоскости есть прямая m и точка А , не лежащая на этой прямой, то через эту точку можно провести не более одной прямой, параллельной данной. По правде говоря, этот вариант пятого постулата Евклида предложил шотландский математик XVIII в. Джон Плейфер. В формулировке самого Евклида речь шла о сумме углов и не использовалось слово «параллельная». Вопрос заключался вот в чем: можно ли вывести пятый постулат из других аксиом? Другими словами, избыточна ли эта аксиома? Оказалось, что эта аксиома фундаментальна, то есть не может быть выведена исходя только из четырех других аксиом. Эта идея, вероятно, побудила математиков исследовать, как СН соотносится с аксиомами теории множеств, и рассуждения об аксиомах в конечном счете оказали влияние на теорию множеств.

С годами стало ясно, что вопросы о бесконечности должны быть очень близки к самым основам математики, и подходить к ним следует с чрезвычайной осторожностью.

В 1908 г. был создан набор аксиом, который называется системой Цермело – Френкеля (ZF). Мы уже знакомы с Цермело (это он защищал Кантора и сформулировал первую теорему теории игр); Абрахам Галеви Френкель был израильским математиком, ставшим первым деканом Математического факультета Еврейского университета в Иерусалиме. Они сформулировали свою систему, чтобы создать для теории множеств – и математики в целом – надежную основу, которая дала бы математикам строгие методы для работы с бесконечными множествами и решения некоторых задач в этой области – например парадокса Рассела. Аксиомы ZF – это попросту в высшей степени элементарные утверждения о концепции множеств, которые, как мы верим (да, верим всем сердцем!), настолько самоочевидны, что не вызывают сомнений. Вот, например, «аксиома пустого множества»:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Восемь этюдов о бесконечности. Математическое приключение»

Представляем Вашему вниманию похожие книги на «Восемь этюдов о бесконечности. Математическое приключение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение»

Обсуждение, отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x