Продолжайте думать.
Пока вы думаете, я воспользуюсь этой возможностью, чтобы познакомить вас (или возобновить ваше знакомство) с одним очень важным обозначением, которое упрощает запись и размышления. Разумеется, то, что я ввожу это обозначение именно сейчас, не случайно: оно поможет нам решить эту задачу. Речь идет о символе факториала, который обозначается восклицательным знаком (!). Запись n ! обозначает в математике произведение всех чисел от 1 до n , то есть n ! = 1 × 2 × 3 × 4 × 5 × … × ( n – 1) × n .
Например, 5! = 1 × 2 × 3 × 4 × 5. Однажды один из моих учеников пропустил занятие, на котором я вводил факториалы. Когда он увидел обозначение 5! он назвал его «пять ух!». Сразу же очевидно, что 5! делится на все числа, входящие в произведение. Другими словами, n ! делится на все числа от 1 до n .
Добросовестности ради отмечу, что 0! принимают равным 1, чтобы не вносить противоречий в основную формулу определения факториала: n ! = ( n – 1)! × n .
А теперь попробуем еще раз взяться за нашу задачу.
У вас появились какие-нибудь идеи? Если нет, читайте дальше.
Большая подсказка
Я надеюсь, что за то время, которое мы провели за разговором о факториалах, вы приблизились к решению. Нет никаких сомнений, что факториалы играют в нем какую-то роль. Но какую?
С какого числа следует начать? Может быть, с 100!? Нет, этот вариант не годится. Ведь следующее число, 100! + 1, вполне может оказаться простым, не так ли?
А вот если… Вы уже видите решение?
Огромная подсказка
Может быть, начать с 100! + 2? Такая идея кажется более привлекательной. Это число делится на 2, поскольку на 2 делятся и 100! и 2; следовательно, оно не может быть простым. Мы на верном пути.
Следующее число, 100! + 3, точно так же делится на 3, и, если продолжать в том же духе… 100! + 100 делится на 100. К сожалению, мы никак не можем немедленно установить, составное ли число 100! + 101.
Решение было так близко. Но увы, между 100! + 2 и 100! + 100 всего 99 чисел. Как жаль! Такая прекрасная идея отправляется в помойку.
Минуточку! В помойку? Ни в коем случае! Ее всего лишь нужно немножко подправить.
Решение
Мы можем начать свою последовательность чисел с 101! + 2 и закончить ее на 101! + 101. Тогда мы получим непрерывную последовательность из 100 идущих друг за другом чисел, и все они, вне всякого сомнения, – числа составные.
Очевидно, теперь мы можем найти последовательность чисел любой длины, в которой не будет ни одного простого числа. Например, чтобы получить набор из 1000 последовательных составных чисел, нужно просто начать эту последовательность с 1001! + 2. Из этого, разумеется, следует, что среди по-настоящему больших чисел простые числа будут встречаться все реже и реже {15} 15 Теорема о распределении простых чисел утверждает (более или менее) следующее: вероятность того, что число, близкое к n , окажется простым, пропорциональна натуральному логарифму n , деленному на n . Поскольку это отношение стремится к 0 при n , стремящемся к бесконечности, это гарантирует редкость появления простых чисел среди всех натуральных чисел.
.
Еще о частоте простых чисел
По мере увеличения чисел средняя разность двух последовательных простых чисел тоже становится больше. Однако существует теорема, которая устанавливает верхний предел редкости появления простых чисел среди чисел натуральных. Она утверждает, что отношение
где P i – значение i -го простого числа, приближается к нулю по мере приближения i к бесконечности.
Я переведу это утверждение с математического жаргона на язык понятный и нематематикам. Теорема эта означает, что отношение длины промежутка между простыми числами к самим простым числам становится меньше с увеличением i . Ниже приведен список значений начиная с i = 1. Чтобы было яснее, уточню, что в первой строке i равно 1; следовательно, P i – это первое простое число, то есть 2, а P i +1 – второе простое число, то есть 3. Во второй строке i = 2, а простые числа – P 2 = 3 и P 3 = 5 и так далее.
Как вы видите, значение выражения
имеет тенденцию становиться все меньше и меньше по мере увеличения i (значение этого выражения не уменьшается монотонно; оно лишь проявляет общее снижение с ростом P ), потому что при больших простых числах его числитель становится много меньше знаменателя. Это означает, что разность последовательных простых чисел (чисел, стоящих в числителе) растет медленнее, чем значения самих этих чисел, что и приводит к уменьшению отношения. Хотя в первых строках списка есть некоторая нестабильность, если рассмотреть общую тенденцию, можно увидеть, что промежутки между простыми числами становятся все меньше по сравнению с самими этими числами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу