Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Этот пункт меню позволяет Вам изменять структуру нейронной сети.Вы можете изменить такие важнейшие параметры сети, как

Число нейронов в сети

Число срабатываний сети

Характеристика нейронов

Число нейронов в сети

Все программы, кроме программы Hopfield.

Этот пункт меню позволяет Вам изменять число нейронов в сети от 5 до 10. Подробно структура сети и нейрона описана в разделах Нейронная сетьи Нейрон.

Число срабатываний сети

Все программы, кроме программы Hopfield.

Наиболее широкую известность получили нейронные сети слоистой архитектуры. В таких сетях за время решения примера сигнал только один раз попадает на нейроны каждого слоя. Имитируемая данной программой сеть является полносвязной сетью — каждый нейрон передает сигнал всем другим (в том числе и себе). Однако любую полносвязную сеть можно представить в виде слоистой сети с идентичными слоями. В рамках такого представления число срабатываний сети равно числу слоев нейронной сети, следующих за входным слоем. Число срабатываний сети может изменяться от 1 до 5.

Характеристика нейронов

Программа Sigmoid

В разделе Нейронописана структура работы нейрона. В функциональном преобразователе нейрона, работающем по формуле F = R / (C+|R|), присутствует величина С, называемая характеристикой нейрона. Этот пункт меню позволяет Вам изменять эту величину от 0.001 до 5.

ПрограммаSinus не имеет параметра Характеристика нейрона

ПрограммаPade

В разделе Нейронописана структура работы нейрона. В функциональном преобразователе нейрона, работающем по формуле F = N / (C+D) присутствует величина С, называемая характеристикой нейрона. Этот пункт меню позволяет Вам изменять эту величину в пределах от 0.001 до 5.

Параметры контрастирования

Программа Hopfield.

Если Вы посмотрите на синаптическую карту(воспользуйтесь клавишей для перехода в режим Редактирования карты),то заметите, что большая часть синаптических весов мала и одинакова по величине. Процедура контрастирования (вызывается нажатием клавиш ) позволяет исключить часть связей из функционирования. Вам предлагается два способа исключения «лишних» связей:

Меньше х.ххх все синаптические веса, меньшие числа х.ххх по абсолютной величине устанавливаются равными 0. Число х.ххх должно лежать в интервале от 0 до 1.
Дальше хх все синаптические веса связей с нейронами, удаленными от данного более чем на хх устанавливаются равными 0. По этому алгоритму обрабатываются последовательно все нейроны. Расстояние определяется как сумма модулей разности индексов двух нейронов (сумма расстояния по горизонтали и по вертикали). Например, расстояние между вторым нейроном пятой строки и шестым нейроном первой строки равно |2–6|+|5–1|=8. Задаваемый Вами радиус контрастирования хх должен принадлежать интервалу от 1 до 18.

Все программы, кроме программы Hopfield.

Это подменю позволяет Вам определить понятие «лишних» и "медленно обучаемых" связей, а также связей подлежащих возвращению в обучаемое состояние, путем задания следующих параметров процедуры Контрастирования:

Норма для исключения

Норма для включения

Количество контрастируемых связей

Количество замораживаемых связей

Количество размораживаемых связей

Число циклов накопления критерия

Набор выделенных значений (1/2^n)

Норма для исключения

Все программы, кроме программы Hopfield.

При накоплении показателей чувствительности для исключенияиз обучения связей программа позволяет использовать три варианта нормы:

Показатель чувствительности связи равен максимуму модуля соответствующего элемента векторов антиградиента по всем циклам накопления критерия.

Показатель чувствительности связи равен сумме модулей соответствующего элемента векторов антиградиента по всем циклам накопления критерия.

Показатель чувствительности связи равен сумме соответствующего элемента векторов антиградиента по всем циклам накопления критерия.

Норма для включения

Все программы, кроме программы Hopfield.

При накоплении показателей чувствительности для включенияв обучение связей программа позволяет использовать три варианта нормы:

Показатель чувствительности связи равен максимуму модуля соответствующего элемента векторов антиградиента по всем циклам накопления критерия.

Показатель чувствительности связи равен сумме модулей соответствующего элемента векторов антиградиента по всем циклам накопления критерия.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x