Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как следует из названия второго метода оценивания, вычисляемая по этому способу оценка равна расстоянию от выданного сетью ответа до множества правильных ответов. Множество правильных ответов для примера N-ой задачи задается неравенствами

A[N]-R > A[I], для всех I<>N.

Предобработка входных данных

Все программы, кроме программы Hopfield.

Входные данные задачи распознавания черно-белых изображений представляют собой последовательность 0 и 1 (есть точка — 1, нет — 0). Такие данные не всегда оптимальны для решения задачи распознавания. В связи с этим возникает задача предобработки данных. Возможны различные виды предобработки — преобразования Фурье, построение различных инвариантов и т. п. В этой программе предусмотрено несколько видов предобработки:

Чистый образ

Сдвиговый автокоррелятор

Автокоррелятор сдвиг+отражение

Автокоррелятор сдвиг+вращение

Автокоррелятор сдвиг+вращение+отражение

В результате предобработки получается не только более информативный вектор входных сигналов, но иногда и вектор меньшей размерности. Кроме того, вектор входных сигналов, полученный предобработкой типа "сдвиговый автокоррелятор" является инвариантным к сдвигу.

Чистый образ

Все программы, кроме программы Hopfield.

Это «пустая» предобработка — никакой предобработки не производится.

Сдвиговый автокоррелятор

Все программы, кроме программы Hopfield.

Основная идея этого метода предобработки — сделать вектор входных сигналов нейронной сетиинвариантным к сдвигу. Другими словами, два вектора, соответствующие одному и тому же образу, расположенному в разных местах шаблона 10*10, после предобработки этим способом должны совпадать! Рассмотрим подробно метод вычисления автокоррелятора. Пусть дано изображение X. x[i,j] — точка изображения в i-ом ряду и j-ом столбце. Будем считать x[i,j]=0, если хотя бы один индекс (i или j) находится вне пределов интервала (1,10). Элемент автокоррелятора A — a[l,k] вычисляется по формуле:

a[l,k] = Сумма по i от 1 до 10 (Сумма по j от 1 до 10 < x[i,j]*x[i+l,j+k] >)

Другими словами, a[l,k] — число точек совпадающих при наложении изображения X на это же, но сдвинутое на вектор (l,k) изображение. Легко заметить, что ненулевыми могут быть только элементы автокоррелятора A с индексами –9<=l,k<=9. Однако a[l,k]=a[-l, –k] Таким образом можно рассматривать только часть коррелятора с индексами –9<=i<=9 и 0<=j<=9. Если Вы задаете размер автокоррелятора m*n, то входными сигналами для сети будут служить элементы a[i,j] при — (n-1)<=i<=(n-1), 0<=j<=m-1.

Автокоррелятор сдвиг+отражение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует сдвиговый автокоррелятор.Идея вычисления автокоррелятора сдиг+отражение (S) очень проста: Сложим значения, соответствующие симметричным точкам, и будем считать их новыми значениями. s[k,l]=a[k,l]+a[k, –l]. Очевидно, что автокоррелятор S инвариантен относительно сдвига и отражения. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если Вы задали размеры автокоррелятора m*n, то входными сигналами сети будут s[l,k] при 0<=l<=n-1, 0<=k<=m.

Автокоррелятор сдвиг+вращение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует сдвиговый автокоррелятор.Идея вычисления автокоррелятора очень проста: поворачиваем автокоррелятор A на 90 градусов относительно элемента a[0,0] и получаем элемент автокоррелятора R умножением соответствующих элементов — r[p,q]=a[p,q]*a[q, –p]. Очевидно, что автокоррелятор R инвариантен относительно сдвига и поворота на 90 градусов. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если вы задали размеры автокоррелятора m*n, то входными сигналами сети будут s[l,k] при 0<=l<=n-1, 0<=k<=m.

Автокоррелятор сдвиг+вращение+отражение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует автокоррелятор сдвиг+вращение.Идея вычисления автокоррелятора сдвиг+вращение+отражение (C) очень проста: Сложим значения, соответствующие симметричным точкам, и будем считать их новыми значениями. c[k,l]=r[k,l]+r[k, –l]. Очевидно, что автокоррелятор C инвариантен относительно сдвига, вращения и отражения. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если вы задали размеры автокоррелятора m*n, то входными сигналами сети будут с[l,k] при 0<=l<=n-1, 0<=k<=m.

Параметры нейронной сети

Все программы, кроме программы Hopfield.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x