Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Алгоритмы получения локального обучающего множества для различных способов организации обучения:

Попримерный Для каждого шага обучения новый пример.
Позадачный Для первого шага обучения — все примеры первой задачи, для второго второй и т. д.
Задаче номер N На всех шагах обучения локальное обучающее множество состоит из всех примеров N-ой задачи.
Усредненный Локальное обучающее множество совпадает с полным, то есть включает в себя все примеры всех пяти задач обучающего множества.
Вычисление направления

Все программы, кроме программы Hopfield.

При построении метода обученияВы пользуетесь следующей схемой:

Использовать MParTan Да или Нет

Процедура спуска

Организация обучения Усредненная Позадачная Задаче номер

Вычисление направления Случайный спуск Градиентный спуск

Метод оценивания Метод наименьших квадратов Расстояние до множества

Нейронная сеть

Данная программа предусматривает два способа вычисления направления спуска. Первый способ известен как Случайный поиск, а второй как метод наискорейшего спуска. В первом случае в качестве направления спуска используется случайный вектор, а во втором — вектор антиградиента функции оценки.

Уровень УДАРА

Этот пункт позволяет задать параметр Случайного изменения карты.Уровень УДАРА должен лежать в пределах от 0.001 до 1.

Процедура спуска

Все программы, кроме программы Hopfield.

При построении метода обученияВы пользуетесь следующей схемой:

Использовать MParTan Да или Нет

Процедура спуска

Организация обучения Усредненная Позадачная Задаче номер

Вычисление направления Случайный спуск Градиентный спуск

Метод оценивания Метод наименьших квадратов Расстояние до множества

Нейронная сеть

Входными параметрами процедуры спуска являются

1. Начальная карта.

2. Направление спуска.

3. Локальное обучающее множество.

4. Процедура вычисления оценки.

Алгоритм процедуры спуска:

1. Вычисляем оценку по локальному обучающему множеству (Е1).

2. Делаем пробный шаг, добавляя к начальной карте вектор направления спуска умноженный на шаг S.

3. Вычисляем оценку по локальному обучающему множеству (Е2).

4. Если Е2E1. Карта, которой соответствует оценка E1,и является результатом работы процедуры.

5. Если после первого выполнения шага 3 оказалось, что E2>E1, то уменьшаем шаг S, полагаем E1=E2 и повторяем шаги алгоритма 1–3 и 5 до тех пор, пока не станет E2

Метод оценивания

Все программы, кроме программыHopfield.

При построении метода обученияВы пользуетесь следующей схемой:

Использовать MParTan Да или Нет

Процедура спуска

Организация обучения Усредненная Позадачная Задаче номер

Вычисление направления Случайный спуск Градиентный спуск

Метод оценивания Метод наименьших квадратов Расстояние до множества

Нейронная сеть

В данной программе принят способ кодирования ответа номером канала: номер того из пяти ответных нейронов, который выдал на последнем такте функционирования наибольший сигнал, задает номер класса, к которому сеть отнесла предъявленный образ. Оценка, таким образом, может быть вычислена только для задачи, ответ которой известен.

Данная программа предусматривает два различных способа оценивания решения. Различие в способах оценки связано с различием требований, накладываемых на обученную сеть. Пусть пример относится к N-ой задаче. Тогда требования можно записать так:

Метод наименьших квадратов ( Программа Pade )

N-ый нейрон должен выдать на выходе 1.

Остальные нейроны должны давать на выходе 0 (как можно более близкое к 0 число).

Метод наименьших квадратов ( Программы Sigmoid и Sinus ).

N-ый нейрон должен выдать на выходе 1 (поскольку сигнал 1 для нейрона невозможен (см. Нейрон),то число как можно более близкое к 1).

Остальные нейроны должны давать на выходе –1 (как можно более близкое к –1 число).

Расстояние до множества

В этом случае требование только одно — разница между выходным сигналом N-го нейрона и выходными сигналами остальных нейронов должна быть не меньше уровня надежности.

Таким образом, для Метода наименьших квадратов оценка примера N-ой задачи равна

H = (Сумма по I<>N от 1 до 5 (A[I]+1)^2)) + (A[N]-1)^2

и является обычным Евклидовым расстоянием от правильного ответа до ответа, выданного сетью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x