Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Связи, включенные в список подлежащих размораживанию на втором шаге алгоритма, размораживаем, не изменяя их величин.

Параметры

Программа Hopfield

В этом подменю, Вы можете установить параметры Метода обучения, Контрастированияи Уровень УДАРА.

Все программы, кроме программыHopfield.

В меню «Параметры» Вы можете задать следующие параметры:

Параметры сети

Число нейронов в сети

Число срабатываний сети

Характеристика нейронов

Параметры метода обучения

Использовать MParTan

Организация обучения

Вычисление направления

Способ оценивания

Уровень УДАРА

Параметры контрастирования

Норма для исключения

Норма для включения

Количество контрастируемых связей

Количество замораживаемых связей

Количество размораживаемых связей

Число циклов накопления критерия

Набор выделенных значений (1/2^n)

Методы предобработки

Чистый образ

Сдвиговый автокоррелятор

Автокоррелятор сдвиг+отражение

Автокоррелятор сдвиг+вращение

Автокоррелятор сдвиг+вращение+отражение

Параметры метода обучения

Программа Hopfield

Этот пункт позволяет Вам выбрать один из двух заложенных в программу алгоритмов построения синаптической картыпо обучающему множеству.Если Вы выбрали "Классический Хопфилд", то формирование происходит так, как описано в разделе обучение.Если Вы предпочли "Проекционный Хопфилд", то производится предварительная обработка обучающего множества. Входные данные, задаваемые каждым примером, можно рассматривать как стомерный вектор. Процедура предварительной обработки состоит в ортонормировании системы векторов, задаваемых всеми примерами обучающего множества. Отметим, что при тестировании предобработка отсуствует.

Все программы, кроме программыHopfield.

В этом меню Вы можете задать следующие параметры метода обучения:

Использовать MParTan

Организация обучения

Вычисление направления

Способ оценивания

Уровень УДАРА

Использовать MParTan

Все программы, кроме программы Hopfield.

При построении метода обученияВы пользуетесь следующей схемой:

Использовать MParTan Да или Нет

Процедура спуска

Организация обучения Усредненная Позадачная Задаче номер

Вычисление направления Случайный спуск Градиентный спуск

Метод оценивания Метод наименьших квадратов Расстояние до множества

Нейронная сеть

Входными параметрами процедуры MParTan являются:

1. Начальная карта.

2. Процедура вычисления Направления спуска.

3. Локальное обучающее множество.

4. Процедура вычисления оценки.

Процедура ParTan работает по следующему алгоритму:

1. Запоминаем текущую карту и оценку текущего Обучающего множества,определяемую в соответствии с тремя более низкими уровнями схемы.

2. Используя процедуру вычисления Направления спуска, вычисляет направление спуска и производит спуск в этом направлении. Этот шаг алгоритма выполняется дважды.

3. Запоминаем текущую карту и оценку текущего Обучающего множества,

4. Делаем спуск в направлении, ведущем из первой запомненной карты во вторую.

5. Если оценка не равна 0, то повторяем всю процедуру сначала.

Процедура MParTan несколько отличается от предыдущей, но ее описание слишком сложно. Однако в ее основе лежит та же идея. Если Вы не используете MParTan, то используется следующая процедура

1. Используя процедуру вычисления Направления спуска,вычисляет направление спуска и производит спуск в этом направлении.

2. Если оценка не равна 0, то повторяем всю процедуру сначала.

Организация обучения

Все программы, кроме программы Hopfield.

При построении метода обученияВы пользуетесь следующей схемой:

Использовать MParTan Да или Нет

Процедура спуска

Организация обучения Усредненная Позадачная Задаче номер

Вычисление направления Случайный спуск Градиентный спуск

Метод оценивания Метод наименьших квадратов Расстояние до множества

Нейронная сеть

Под организацией обучения будем понимать способ порождения обучающего множествадля одного шага обучения. Исторически самым первым был способ позадачного обучения. Если быть более точным — то попримерного. Процедура попримерного обучения состоит из следующих шагов:

1. Подаем на вход сети задачу.

2. Получаем ответ.

3. Вычисляем оценку.

Производим корректировку сети. (Процедура спуска)

Таким образом, локальное обучающее множество для процедур MParTan, Процедура спускаи Вычисление направлениясостоит только из одного примера.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x