О. ОРЕ - Приглашение в теорию чисел

Здесь есть возможность читать онлайн «О. ОРЕ - Приглашение в теорию чисел» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1980, Издательство: Наука Главная редакция физико-математической литературы, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Приглашение в теорию чисел: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Приглашение в теорию чисел»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.

Приглашение в теорию чисел — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Приглашение в теорию чисел», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пример . а = 140, b = 110, D ( a, b ) = 10, К ( а, b ) = 1540.

ab = 140 • 110 = 10 • 1540 = D ( a, b ) К ( а, b ).

Из правила (4.4.4) вытекает, что если а и b взаимно простые, то их произведение равно их наибольшему общему кратному; действительно, в этом случае D ( a, b ) = 1 и поэтому ab = K ( а, b ).

Система задач 4.4.

1. Найдите наибольшее общее кратное пар чисел в системе задач 4.1 (с. 49).

2. Найдите наибольшее общее кратное для каждой из четырех первых пар дружественных чисел.

ГЛАВА 5

ЗАДАЧА ПИФАГОРА

§ 1. Предварительные замечания

Во введении (§ 3, гл. 1) мы упоминали об одной из древнейших теоретико-числовых задач: найти все прямоугольные треугольники с целочисленными сторонами, т. е. найти все целочисленные решения уравнения

х 2+ y 2= z 2. (5.1.1)

Эта задача может быть решена с использованием лишь простейших свойств чисел. Прежде чем приступить к ее решению, проведем некоторые предварительные исследования. Тройка целых чисел

( х, у, z ), (5.1.2)

удовлетворяющая уравнению (5.1.1), называется пифагоровой тройкой . Отбросим тривиальный случай, когда одна из сторон треугольника равна нулю.

Ясно, что если множество (5.1.2) является пифагоровой тройкой, то любая тройка чисел

( kx, ky, kz ), (5.1.3)

получающаяся умножением каждого из этих чисел на некоторое целое число k , также будет пифагоровой, и наоборот. Таким образом, при поиске решений достаточно ограничиться нахождением простейших треугольников , длины сторон которых не имеют общего множителя k > 1. Например, тройки

(6, 8, 10), (15, 20, 25)

являются пифагоровыми тройками, получающимися из простейшего решения (3, 4, 5).

В простейшей тройке ( x, у, z ) не существует общего множителя для всех трех чисел. В действительности справедливо более сильное утверждение: никакие два числа из простейшей тройки не имеют общего множителя, т. е.

D ( x, y ) = 1, D ( x, z ) = 1, D(y, z ) = 1. (5.1.4)

Чтобы доказать это, предположим, что, например, х и у имеют общий делитель. Тогда они имеют общий простой делитель р . В соответствии с (5.1.1) число р должно также делить и r . Итак, ( х, у, z ) не может быть простейшей тройкой. Такие же рассуждения применимы для доказательства остальных двух утверждений.

Рассмотрим еще ряд свойств простейших троек. Мы только что получили, что числа х и у не могут быть оба четными, но мы можем также показать, что они не могут быть и оба нечетными. Действительно, предположим, что

x = 2 a +1, y = 2 b + 1.

После возведения в квадрат этих чисел и сложения их, получим число

x 2+ y 2= (2 a + 1) 2+ (2 b + 1) 2= 2 + 4 а + 4 a 2+ 4 b + 4 b 2= 2 + 4 ( а + а 2+ b + b 2),

делящееся на 2, но не делящееся на 4. В соответствии с (5.1.1) это означает, что z 2делится на 2, но не делится на 4, но это невозможно, так как если z 2делится на 2, то и z делится на 2, но тогда z 2делится на 4.

Так как одно из чисел х и у — четное, а другое — нечетное, то z — также нечетное. Для определенности будем считать, что в наших обозначениях число х — четное, а у — нечетное.

§ 2. Решение задачи Пифагора

Чтобы найти простейшие решения уравнения Пифагора (5.1.1), перепишем его в виде

x 2= z 2— y 2= ( z + y )( z — y ). (5.2.1)

Вспоминая, что х — четное, а у и z — оба нечетные, получаем, что все три числа

х, z + y, z — y

четные. Тогда мы можем разделить обе части уравнения (5.2.1) на 4 и получить

(1/2 x ) 2= 1/2 ( z + y ) 1/2 ( z — y ). (5.2.2)

Обозначим

m 1 = 1/2 ( z + y ), n 1= 1/2 ( z — y ); (5.2.3)

тогда уравнение (5.2.2) перепишется как

(1/2 x ) 2= m 1 n 1. (5.2.4)

Числа mn 1взаимно простые. Чтобы это увидеть, предположим, что

d = D ( m 1, n 1)

есть наибольший общий делитель чисел mn 1. Тогда, как это следует из § 1 гл. 4, число d должно делить оба числа

m 1+ n 1= z , m 1— n 1= y.

Но единственным общим делителем чисел z и у в простейшей тройке может быть только 1, поэтому

d = D ( m 1, n 1) = 1. (5.2.5)

Так как произведение (5.2.4) этих двух взаимно простых чисел является квадратом, то можно использовать результат, изложенный в конце § 2 гл. 4 (стр. 50), согласно которому числа mn 1являются квадратами

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Приглашение в теорию чисел»

Представляем Вашему вниманию похожие книги на «Приглашение в теорию чисел» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Приглашение в теорию чисел»

Обсуждение, отзывы о книге «Приглашение в теорию чисел» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x