Примеры. z = 41. Это число легко представить в виде суммы двух квадратов искомого вида, z = 5 2+ 4 2 , так что m = 5, n = 4 и x = 40, у = 9, z = 41 выражают длины сторон соответствующего треугольника.
z = 1105 = 5 • 13 • 17. Существуют четыре представления этого числа в виде суммы двух квадратов:
1105 = ЗЗ 2+ 4 2= 32 2+ 9 2= 31 2+ 12 2= 24 2+ 23 2.
Стороны соответствующих треугольников вычислите самостоятельно.
Целый ряд задач о треугольниках Пифагора может быть решен при помощи наших формул (5.2.7)
х = 2 mn, у = m 2— n 2, z = m 2+ n 2.
Например, можно искать треугольники Пифагора с заданной площадью А . Если такой треугольник является простейшим, то его площадь равна
А = 1/2 ху = mn ( m — n ) ( m + n ). (5.3.8)
Здесь три из четырех множителей нечетны. Нетрудно видеть, что они попарно взаимно простые. Поэтому, чтобы найти все возможные значения чисел m и n , можно выделить из числа А два взаимно простых нечетных множителя k и k ( k > l ), положив
m + n = k, m — n = l ,
что дает
m = 1/2 ( k + l ), n = 1/2 ( k — l ).
После этого мы проверяем, удовлетворяют ли эти числа условиям (5.3.8).
Рассуждения несколько упрощаются, если заметить, что два множителя в выражении (5.3.8) могут равняться 1 только в единственном случае:
m = 2, n = 1, A = 6.
Действительно, два множителя в (5.3.8) могут быть равны 1, только если
n = m — n = 1,
что и дает указанное выше значение.
Пример. Найдем все треугольники Пифагора с площадью А = 360. Разложение числа А на простые множители таково: A = 2 3 3 2 • 5. Число А может быть единственным образом записано в виде произведения четырех взаимно простых множителей: А = 8 • 1 • 5 • 9. Если мы ищем простейший треугольник, то m + n = 9. Однако если m = 8, то n = 1 и m — n = 7, но А не делится на 7, а вторая возможность ( n = 8, m = 1) исключается условием > n . Поэтому такого треугольника не существует.
Этот результат не исключает возможности существования треугольников с площадью А = 360, не являющихся простейшими. Следующее соображение может быть использовано в общем случае для нахождения треугольников заданной площади, не являющихся простейшими. Если длины всех сторон треугольника имеют общий делитель d , т. е. могут быть записаны как
dx, dy, dz ,
то его площадь равна
А = 1/2 dx dy = d 2 mn ( m — n ) ( m + n ).
Таким образом, число d 2является множителем числа А и, если число d есть наибольший общий делитель длин сторон, то число
А 0= A/d 2= mn ( m — n ) ( m + n )
должно быть площадью простейшего треугольника.
Применим полученный результат к только что рассмотренному случаю А = 360. У этого числа существуют три множителя, являющиеся квадратами;
d 1= 4, d 2= 9, d 3= 36.
Соответственно находим
A/d 1=90 = 2 • 3 2 • 5, A/d 2= 40 = 2 3 • 5, A/d 3= 10 = 2 • 5.
Не существует способов написать число 40 или 10 в виде произведения четырех взаимно простых множителей, а число 90 может быть представлено в таком виде, причем единственным образом, а именно:
90 = 1 • 2 • З 2 • 5.
(В числе сомножителей 1 может встречаться не более одного раза, за исключением случая m = 2, n = 1, А = 6.) Так как наибольшим множителем является 9, то мы должны взять m + n = 9. Однако, перебирая все возможные значения m = 1, 2, 5, получим соответственно n = 8, 7, 4. Условие m > n исключает все случаи, кроме m = 5, n = 4, для которого, однако, mn ( m + n ) ( m — n ) ≠ 90. Итак, мы получили, что не существует ни простейшего, ни иного треугольника Пифагора с площадью А = 360.
Можно было бы затронуть еще много других вопросов, но упомянем лишь об одном из них. Периметр треугольника равен
c = x + y + z ; (5.3.9)
для простейшего треугольника Пифагора получаем
с = 2 mn + ( т 2— n 2) + ( m 2+ n 2) = 2 n ( m + n ).
Мы предоставляем читателю самому отыскать метод нахождения всех треугольников Пифагора с заданным периметром. Не пренебрегайте рассмотрением
числовых примеров.
Мы решили задачу построения всех треугольников Пифагора. Это ведет нас к исследованию более общих связанных с ней задач. Естественным обобщением задачи Пифагора является задача Герона , названная по имени древнегреческого математика Герона, жившего в Александрии: найти все треугольники с целочисленными сторонами, площади которых также выражаются целыми числами . Эта задача отличается от задачи Пифагора тем, что условие наличия прямого угла заменено требованием целочисленности площади. Очевидно, что всякий треугольник Пифагора удовлетворяет условиям задачи Герона.
Читать дальше