О. ОРЕ - Приглашение в теорию чисел

Здесь есть возможность читать онлайн «О. ОРЕ - Приглашение в теорию чисел» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1980, Издательство: Наука Главная редакция физико-математической литературы, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Приглашение в теорию чисел: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Приглашение в теорию чисел»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.

Приглашение в теорию чисел — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Приглашение в теорию чисел», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Примеры. z = 41. Это число легко представить в виде суммы двух квадратов искомого вида, z = 5 2+ 4 2 , так что m = 5, n = 4 и x = 40, у = 9, z = 41 выражают длины сторон соответствующего треугольника.

z = 1105 = 5 • 13 • 17. Существуют четыре представления этого числа в виде суммы двух квадратов:

1105 = ЗЗ 2+ 4 2= 32 2+ 9 2= 31 2+ 12 2= 24 2+ 23 2.

Стороны соответствующих треугольников вычислите самостоятельно.

Целый ряд задач о треугольниках Пифагора может быть решен при помощи наших формул (5.2.7)

х = 2 mn, у = m 2— n 2, z = m 2+ n 2.

Например, можно искать треугольники Пифагора с заданной площадью А . Если такой треугольник является простейшим, то его площадь равна

А = 1/2 ху = mn ( m — n ) ( m + n ). (5.3.8)

Здесь три из четырех множителей нечетны. Нетрудно видеть, что они попарно взаимно простые. Поэтому, чтобы найти все возможные значения чисел m и n , можно выделить из числа А два взаимно простых нечетных множителя k и k ( k > l ), положив

m + n = k, m — n = l ,

что дает

m = 1/2 ( k + l ), n = 1/2 ( k — l ).

После этого мы проверяем, удовлетворяют ли эти числа условиям (5.3.8).

Рассуждения несколько упрощаются, если заметить, что два множителя в выражении (5.3.8) могут равняться 1 только в единственном случае:

m = 2, n = 1, A = 6.

Действительно, два множителя в (5.3.8) могут быть равны 1, только если

n = m — n = 1,

что и дает указанное выше значение.

Пример. Найдем все треугольники Пифагора с площадью А = 360. Разложение числа А на простые множители таково: A = 2 3 3 2 • 5. Число А может быть единственным образом записано в виде произведения четырех взаимно простых множителей: А = 8 • 1 • 5 • 9. Если мы ищем простейший треугольник, то m + n = 9. Однако если m = 8, то n = 1 и m — n = 7, но А не делится на 7, а вторая возможность ( n = 8, m = 1) исключается условием > n . Поэтому такого треугольника не существует.

Этот результат не исключает возможности существования треугольников с площадью А = 360, не являющихся простейшими. Следующее соображение может быть использовано в общем случае для нахождения треугольников заданной площади, не являющихся простейшими. Если длины всех сторон треугольника имеют общий делитель d , т. е. могут быть записаны как

dx, dy, dz ,

то его площадь равна

А = 1/2 dx dy = d 2 mn ( m — n ) ( m + n ).

Таким образом, число d 2является множителем числа А и, если число d есть наибольший общий делитель длин сторон, то число

А 0= A/d 2= mn ( m — n ) ( m + n )

должно быть площадью простейшего треугольника.

Применим полученный результат к только что рассмотренному случаю А = 360. У этого числа существуют три множителя, являющиеся квадратами;

d 1= 4, d 2= 9, d 3= 36.

Соответственно находим

A/d 1=90 = 2 • 3 2 • 5, A/d 2= 40 = 2 3 • 5, A/d 3= 10 = 2 • 5.

Не существует способов написать число 40 или 10 в виде произведения четырех взаимно простых множителей, а число 90 может быть представлено в таком виде, причем единственным образом, а именно:

90 = 1 • 2 • З 2 • 5.

(В числе сомножителей 1 может встречаться не более одного раза, за исключением случая m = 2, n = 1, А = 6.) Так как наибольшим множителем является 9, то мы должны взять m + n = 9. Однако, перебирая все возможные значения m = 1, 2, 5, получим соответственно n = 8, 7, 4. Условие m > n исключает все случаи, кроме m = 5, n = 4, для которого, однако, mn ( m + n ) ( m — n ) ≠ 90. Итак, мы получили, что не существует ни простейшего, ни иного треугольника Пифагора с площадью А = 360.

Можно было бы затронуть еще много других вопросов, но упомянем лишь об одном из них. Периметр треугольника равен

c = x + y + z ; (5.3.9)

для простейшего треугольника Пифагора получаем

с = 2 mn + ( т 2— n 2) + ( m 2+ n 2) = 2 n ( m + n ).

Мы предоставляем читателю самому отыскать метод нахождения всех треугольников Пифагора с заданным периметром. Не пренебрегайте рассмотрением

числовых примеров.

Мы решили задачу построения всех треугольников Пифагора. Это ведет нас к исследованию более общих связанных с ней задач. Естественным обобщением задачи Пифагора является задача Герона , названная по имени древнегреческого математика Герона, жившего в Александрии: найти все треугольники с целочисленными сторонами, площади которых также выражаются целыми числами . Эта задача отличается от задачи Пифагора тем, что условие наличия прямого угла заменено требованием целочисленности площади. Очевидно, что всякий треугольник Пифагора удовлетворяет условиям задачи Герона.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Приглашение в теорию чисел»

Представляем Вашему вниманию похожие книги на «Приглашение в теорию чисел» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Приглашение в теорию чисел»

Обсуждение, отзывы о книге «Приглашение в теорию чисел» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x