Рассмотрим, наконец, суждение «Все x суть y», состоящее из двух частных суждений: «Некоторые x суть y» и «Ни один x не есть y». В этом случае авторы уже упоминавшихся трудов по логике понимают связку `уже , чем мы, в первой части и шире , чем мы, — во второй . Узость интерпретации одного суждения (и у нас, и у них) отнюдь не компенсируется широтой интерпретации другого: если уж вас угораздило сбить печную трубу, то хозяин дома вряд ли утешится тем, что вы пристроите еще одну ступеньку к крыльцу.
Предложенная мной система позволит вам без особого труда решать и силлогизм в интерпретации авторов ученых трудов по логике: стоит лишь заменить «суть» на «могут быть», и все остальное пойдет как по маслу. Суждение «Некоторые x суть y» перейдет при этом в суждение «Некоторые x могут быть y», т. е. «Признаки x и y совместимы ». Суждение «Ни один x не есть y» примет вид «Ни один x не может быть y», т. е. «Признаки x и y несовместимы ». Суждение же «Все x суть y» станет двойным суждением «Некоторые x могут быть y, и ни один x не может быть y'», т. е. «Признаки x и y совместимы , и признаки x и y' несовместимы ». При пользовании диаграммой по этой системе необходимо не упускать из виду, что красная фишка означает суждение «Вполне возможно, что в этой клетке что-нибудь есть», а черная — суждение «Вполне возможно, что в этой клетке ничего нет».
Вы, конечно, думаете, что в реальной жизни логику используют главным образом для вывода заключений из правильных посылок и для проверки заключений, выведенных другими людьми (ведь я угадал, не так ли?). Как бы я хотел, чтобы все обстояло именно так! Общество было бы в гораздо меньшей степени подвержено пагубным заблуждениям, а политическая жизнь выглядела совсем иначе, если бы аргументы (пусть даже не все, но хотя бы большинство), широко распространенные во всем мире, были правильными. Боюсь, что в действительности наблюдается обратная картина. На одну здравую пару посылок (под здравой я понимаю пару посылок, из которых, рассуждая логически, можно вывести заключение), встретившуюся вам при чтении газеты или журнала, приходится по крайней мере пять пар, из которых вообще нельзя вывести никаких заключений. Кроме того, даже исходя из здравых посылок автор приходит к правильному заключению лишь в одном случае, в десяти же он выводит из правильных посылок неверное заключение.
В первом случае (когда посылки не ведут ни к какому логическому заключению) мы говорим об ошибке в посылках , во втором (когда из правильных посылок выводится неверное заключение) — об ошибке в заключении .
Главная польза, которую вы сможете извлечь из владения логикой на том уровне, который приобретете, играя в нашу «Логическую игру», — это умение обнаруживать логические ошибки только что названных двух типов.
Ошибку первого типа («Ошибку в посылках») вы обнаружите после того, как, расставив фишки на большой диаграмме, попытаетесь извлечь из нее сведения, необходимые для расстановки фишек на малой диаграмме. Рассматривая по очереди все четыре клетки малой диаграммы и спрашивая себя каждый раз: «Какую фишку я должен поставить на эту клетку?», вы всякий раз будете приходить к одному и тому же ответу: «Не знаю, об этой клетке у меня нет никаких сведений». Это и будет означать, что из рассматриваемой вами пары посылок вообще нельзя вывести никакого заключения . Например, пусть имеются две посылки и заключение:
«Все солдаты храбрые».
«Некоторые англичане храбрые».
—
«Некоторые англичане — солдаты».
Выглядит это весьма похоже на силлогизм, и менее опытный логик вполне мог бы принять такое рассуждение за силлогизм. Но провести вас не так-то просто! Вы выделяете посылки, рассматриваете их, а затем холодно замечаете: «Ошибка в посылках!» и даже не снисходите задать вопрос о том, какое заключение намеревался вывести из них автор, заведомо зная, что каким бы оно ни было , оно должно быть ложным . В правильности своего диагноза вы столь же уверены, как та мудрая мать, которая говорит няне: «Мэри, поднимитесь, пожалуйста, в детскую, посмотрите, что делает малыш и скажите ему, чтобы он этого не делал! »
Ошибку другого типа — ошибку в заключении — вы сможете обнаруживать лишь после того, как построите обе диаграммы и, прочитав верное заключение, сравните его с заключением, данным автором.
Читать дальше