Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление

Здесь есть возможность читать онлайн «Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление
  • Автор:
  • Издательство:
    «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6; 978-5-9774-0727-4 (т.32)
  • Рейтинг книги:
    3 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Эта книга наверняка поможет читателю почувствовать очарование хаоса.

Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математическое определение хаоса, с одной стороны, отражает чувствительность к начальным условиям, или эффект бабочки, а с другой стороны — запутанную топологическую структуру, или эффект карточной колоды (он заключается в том, что траектории переплетаются между собой так, будто воображаемый пекарь месит воображаемое тесто).

ХАОС= ЭФФЕКТ БАБОЧКИ+ ЭФФЕКТ КАРТОЧНОЙ КОЛОДЫ

Хаос представляет собой совокупность эффекта бабочки и эффекта карточной колоды. Недостаточно, чтобы близлежащие траектории со временем быстро отдалялись друг от друга — они также должны растягиваться, складываться и при этом переплетаться.

Существует множество классических примеров хаотических систем, большинство из которых мы уже упоминали. Если говорить о непрерывных динамических системах, то наиболее ярким примером системы, не сохраняющей энергию (диссипативной системы), будет система Лоренца — упрощенная модель земной атмосферы.

Система Эно — Хайлса, связанная с задачей трех тел, — это классическая модель хаотической системы без диссипации (такие системы называются гамильтоновыми).

Если говорить о дискретных динамических системах, то вам уже знакомы логистическое отображение Мэя (о нем мы подробнее поговорим далее) и двухмерное отображение Эно — две системы, по форме схожие с подковой Смэйла и, что более важно, обладающие символической динамикой. Примером символической динамики является сдвиг Бернулли — возможно, простейшая разновидность дискретной динамической хаотической системы.

Сдвиг Бернулли определяется следующим образом: для данного числа хна интервале от 0 до 1, записанного в виде десятичной дроби, нужно сдвинуть запятую на одно положение вправо и отбросить первую цифру (то есть целую часть полученного числа). Пример:

В (0,324571) = 0,24571.

Мы сдвинули запятую на одну позицию вправо и стерли цифру 3. Аналогично,

В(0,24571) = 0,4571

В(0,4571) = 0,571

В(0,571) = 0,71

В(0,71) = 0,1

В(0,1) = 0

В(0) = 0

В(0) = 0

Следовательно, орбита или траектория начального значения х = 0,324571 будет записываться так: {0,324571; 0,24571; 0,4571; 0,571; 0,71; 0,1; 0; 0; 0}. Эта орбита стремится к фиксированной точке 0 (точечному аттрактору, или фокусу).

Как вы узнаете позже, сдвиг Бернулли обладает хаотическим поведением, поскольку в нем присутствуют и эффект бабочки, и эффект карточной колоды. Чувствительность к начальным условиям несложно подтвердить экспериментально: допустим, что мы хотим проследовать вдоль траектории точки х= 1/3 = 0,3 = 0,33333. Так как результатом измерения может быть лишь конечное число десятичных знаков, рассмотрим у= 0,3333. Ошибка будет составлять менее одной тысячной. Изначально орбиты хи убудут располагаться поблизости, однако затем отдалятся друг от друга:

В (0,33333…) = 0,33333 — В (0,3333) = 0,333

В (0,33333…) = 0,33333 — В (0,333) = 0,33

В (0,33333…) = 0,33333 — В (0,33) = 0,3

В (0,33333…) = 0,33333 — В (0,3) = 0

В (0,33333…) = 0,33333 — В(0) = 0

В (0,33333…) = 0,33333 — В(0) = 0

… --…

Подобно остальным периодическим десятичным дробям, х= 0,3 определяет периодическую орбиту для сдвига Бернулли. В нашем случае точка х имеет период, равный 1, то есть это фиксированная точка, так как она повторяется бесконечное число раз. И напротив, у= 0,3333, подобно всем остальным непериодическим десятичным дробям, — это точка, составляющая часть впадины аттрактора, расположенного в точке 0, так как в долгосрочном периоде ее орбита притягивается к точке 0. Ошибка измерения, которая изначально составляла менее одной тысячной ( ху = 0,3 — 0,3333 = 0,00003), значительно возрастет и будет иметь порядок нескольких десятых (после четвертой итерации ошибка будет равна 0,3 — 0 = 0,3).

Два начальных условия, близкие друг к другу, порождают две траектории, которые по прошествии определенного времени никак не связаны между собой.

Где в нашем случае проявляется эффект карточной колоды? Рассмотрим бесконечные непериодические десятичные дроби, то есть иррациональные числа. Построим орбиты чисел (2) 0,5- 1 (= 0,41421356237…) и π — 3 (= 0,14159265358…):

B((2) 0,5- i) = 0,14213… — В (π — 3) = 0,41592…

В(0,14213..) = 0,42135… -- В (0,41592…) = 0,15926…

В (0,42135…) = 0,21356… -- В (0,15926…) = 0,59265…

В (0,21356…) = 0,13562… -- В (0,59265…) = 0,92653…

В(0,13562…) = 0,35623… -- В (0,92653…) = 0,26535…

В (0,35623.. .) = 0,56237… -- В (0,26535…) = 0,65358…

… --…

Что вы видите? Полученные десятичные дроби абсолютно случайны! Они напоминают номера лотерейного тиража. Это случайность, порождаемая хаосом. Орбиты чисел (2) 0,5-1, π — 3 или любого другого иррационального числа будут колебаться между 0 и 1. они будут приближаться к нулю столь же часто, как и к единице (или к 0,5). Знаки в десятичной записи иррациональных чисел не подчиняются какому-либо закону. Таким образом, если два рациональных числа — периодические десятичные дроби, значение которых точно известно, — порождают орбиты, которые рано или поздно будут периодическими (то есть начнут повторяться), то иррациональные числа (бесконечные непериодические десятичные дроби), напротив, порождают исключительно беспорядочные орбиты. Так как любое рациональное число бесконечно близко к некоторому иррациональному, периодические и непериодические орбиты неизбежно будут переплетаться между собой. В этом и заключается эффект карточной колоды.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»

Представляем Вашему вниманию похожие книги на «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Яна Дубинянская - Глобальное потепление
Яна Дубинянская
Отзывы о книге «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»

Обсуждение, отзывы о книге «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x