где f— функция, описывающая, как вычисляется х n+1на основе х. Иными словами, эта функция указывает, как вычислить х 1через x 0, х 2через х 1, х 3через х 2и так далее.
Уравнение в конечных разностях — это формула, выражающая значение переменной на следующем шаге через ее значение на предыдущем шаге. Так, для данного начального условия x 0 решением динамической системы будет траектория { x 0, х 1, x 2, х 3 …}. Чтобы получить ее, нужно применить f к х 0некоторое число раз.
В непрерывных динамических системах время не принимает набор фиксированных значений, а течет непрерывно, как и в реальном мире. Непрерывные динамические системы описываются дифференциальными уравнениями, подобными приведенным в предыдущих главах. Дифференциальные уравнения — это формулы, выражающие скорость измерения переменной в зависимости от ее текущего значения.
В математическом анализе хаоса мы для простоты будем рассматривать дискретные динамические системы, так как они позволят вам понять суть вопроса.
Существует теорема, согласно которой непрерывная динамическая система будет хаотической тогда и только тогда, когда существует такое сечение Пуанкаре, что в нем можно определить дискретную динамическую систему, которая также будет хаотической.
Существует особый класс дискретных динамических систем, обладающих очень важной характеристикой: эти системы являются нелинейными. Система называется линейной, если функция fявляется линейной, то есть функцией первой степени, следовательно, имеет вид f( х) = ах+ Ь. Если же функция f нелинейная (то есть ее степень больше 1) и, к примеру, имеет вид f( х) = ах 2+ Ьх+ с, то такая система считается нелинейной.
Несмотря на то что в нелинейных динамических системах значения величин, характеризующих систему, определяются значениями величин в предыдущий момент времени (такая система называется детерминированной), выходные значения непропорциональны входным. Микроскопические изменения в начальных условиях могут вызвать значительные изменения конечного состояния системы. Именно эта несоразмерность между причинами и следствиями объясняет, почему поведение подобных систем столь разнообразно: некоторые из них описывают фиксированные точки, периодические, квазипериодические и, наконец, хаотические орбиты.
Виды нелинейных динамических систем (стационарные, периодические и хаотические), соответствующие им представления временных рядов значений (слева) и графики траекторий на фазовой диаграмме (справа).
Эффект бабочки и эффект карточной колоды
Настало время ответить на вопрос, вынесенный в название главы: что же такое детерминированный хаос? Сначала посмотрим, что мы узнали о работах Пуанкаре, Смэйла и Лоренца из предыдущих глав. Мы увидели, что геометрическая сущность хаоса заключается в растяжении и последующем складывании траекторий.
В результате последовательных растяжений и складываний траектории на фазовом пространстве становятся подобны тарелке спагетти, в которой каждая траектория переплетена с остальными. Следовательно, малейшая неточность при измерении начальных условий может привести к тому, что мы проследуем вдоль неверной траектории-спагетти, которая переплетена с той, что нас интересует, но ведет к совершенно другой части блюда. В результате наш прогноз в долгосрочном периоде будет ошибочным. Эффект бабочки в действии.
История появления теории хаоса показывает нам две структурные характеристики, связанные с хаосом и объясняющие его непредсказуемость. Во-первых, хаотические системы крайне чувствительны к начальным условиям (это показали Пуанкаре и Лоренц), во-вторых, траектории в хаотических системах, растягиваясь и складываясь пополам, переплетаются между собой (Пуанкаре, Смэйл). Мы продемонстрировали обе эти характеристики на примере задачи трех тел Пуанкаре, бильярда Адамара, подковы Смэйла, системы Лоренца и других.
Читать дальше