Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Далее фон Нейман поясняет эту мысль на примере зрительного восприятия и делает кардинальной важности вывод. По его мнению, «очень возможно, что простейший и единственно доступный на практике способ показать, что представляет собой явление зрительного сходства, состоит в описании связей, существующих в зрительном аппарате мозга. Здесь нам придется иметь дело с такими разделами логики, в которых у нас практически нет предшествующего опыта. Степень сложности, с которой мы сталкиваемся в этом случае, далеко выходит за рамки всего того, что нам известно. Мы не имеем права считать, что логические обозначения и методы, применявшиеся ранее, могут быть использованы и в этой области. У нас нет полной уверенности в том, что в этой области реальный объект не может являться простейшим описанием самого себя, то есть, что всякая попытка описать его с помощью обычного словесного или формально-логического метода не приведет к чему-то более сложному, запутанному и трудновыполнимому... Весьма возможно, что уже сама схема связей в зрительном аппарате мозга является простейшим логическим выражением (или определением) принципа зрительной аналогии».

Попытка приспособить логику для описания сложных систем подобных мозгу, может, считал фон Нейман, привести к тому, что в ходе этого развития «логика будет вынуждена претерпеть метаморфозу и превратиться в неврологию в гораздо большей степени, чем неврология — в раздел логики» [11].

Из идей фон Неймана вытекает, что проблема создания машинной программы, способной решать все те многообразнейшие задачи, которые успешно решает человеческий мозг (и проблема построения машины «в металле», реализующей эту программу), чрезвычайно трудна, если не безнадежна. Конечно, фон Нейман вполне разделял «кибернетическую редакцию» рационалистического тезиса: «Любой процесс, происходящий в реальности (частью которой является функционирование нашего мозга), коль скоро он ясно и однозначно описан на каком-то языке, может быть в принципе промоделирован на вычислительной машине». Для того, кто признает материалистическое положение о том, что любой процесс природы познаваем с помощью разума, этот тезис должен быть естественным выводом из логико-математической теории вычислимости. А эту теорию фон Нейман полностью учитывал. В работе, цитаты из которой мы привели, он излагает смысл «тезиса Тьюринга» (и равносильного ему другого тезиса, о котором мы не имели возможности рассказать в данной книге, тезиса Мак-Калпока — Питтса, связанного с созданной ими теорией формальных нервных сетей), однако подчеркивает, что «тезисы вычислимости» ничего не могут дать для решения обсуждаемой им проблемы.

Показанная фон Нейманом трудность имеет главными источниками гибкость и богатство человеческого мышления и естественного языка и сверхсложность реализующей их системы — мозга. Наша внутренняя жизнь и ее проявления в языке столь многообразны, проблемы, волнующие человеческую личность, так глубоки, что допущение о возможности перевода (реальной возможности — в любом разумном смысле слова «реальной») любой из них на какой-либо «точный» язык — например, язык рекурсивных функций, чрезвычайно сомнительна. Взгляд свысока на «неточность» переживаний и мыслей, например, героев Достоевского или Чехова, был бы проявлением либо крайней наивности, либо своеобразного математического лицемерия.

Вывод, к которому мы приходим, заключается в том, что, рассматривая возможности вычислительных машин, к различию между потенциально осуществимым и фактически реализуемым надо добавить различие между фактически реализуемым и фактически нереализуемым, не только в настоящее время, но и в любом обозримом будущем. На вопрос о границе между потенциально осуществимым и неосуществимым с помощью автоматов ответ дает описанный нами тезис кибернетики, который следует признать имеющим важное гносеологическое содержание [12]. На вопрос же о том, где пролегает граница между тем, что для математики, вычислительной техники и кибернетики реально осуществимо и что реально невозможно (хотя и возможно потенциально), ответа мы не знаем.

Имеются два подхода к решению этого вопроса (впрочем, они тесно связаны между собой). Первый из них состоит в изучении феномена сложности в окружающем нас мире [13]. На важность изучения этого феномена внимание обратил, как мы видели, фон Нейман. Добавим теперь, что им была высказана следующая идея: если система становится достаточно Сложной, она приобретает способность не просто воспроизводить подобные себе системы (математике-логическими средствами фон Нейман доказал, как возможны самовоспроизводящиеся автоматы [14]), но и порождать системы возрастающей сложности. Разумеется, для придания ясности этому утверждению требуется уточнение самого понятия сложности. Развивающиеся в настоящее время работы по теории сложности вычислений и алгоритмов [15]как раз и направлены на поиски такого уточнения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x