Могут возникнуть, однако, и существенно менее утешительные ситуации. Одна из них может состоять в том, что у математика сложится убеждение (подкрепленное вескими соображениями): задача столь сложна, что ее решение окажется недоступным для любых вычислительных систем, которые могут появиться на любом мыслимом этапе грядущего развития цивилизации.
Что задачи, недоступные для решения по программе определенного типа, которую мы можем составить в настоящее время, для любых машин, мыслимых сконструированными в будущем, существуют, убедиться нетрудно. Таковой, например, является задача автоматизации игры в шахматы, основанная на описанной выше идее полного перебора вариантов. По оценке Шеннона число вариантов в этой игре достигает порядка 10 120. Если допустить, что на оценку каждого варианта машина тратит одну миллиардную секунды (допущение, колоссально далекое от возможностей даже проектируемых машин четвертого поколения, быстродействие которых, по имеющимся данным, достигнет нескольких миллиардов элементарных операций в секунду) то расчет вариантов, необходимый для автоматизации шахматной игры, займет время, большее, чем время предполагаемого существования нашей галактики!
Конечно, программа, основанная на простом переборе очень неэкономна. Можно строить — и уже построены - иные программы игры в шахматы; лучшие из них основаны на принципах, извлекаемых из изучения того, как принимают решение в игре люди — мастера шахматной игры. Интересные принципы построения программы машинной игры в шахматы разработаны экс-чемпионом мира М. М. Ботвинником [7].
Программы, основанные на изучении и использовании принципов мышления человека, решающего аналогичные задачи, называются эвристическими [8]. Во многих из них автоматизация решения задач получается за счет того, что не каждая задача (из класса задач того типа, на решение которых рассчитана данная программа) может быть фактически решена машиной. Это может происходить, в частности, от того, что не все свойства объектов, которые фигурируют в задаче, учтены в ее программе (некоторые из них могут быть попросту неизвестны). В случае шахмат у специалистов — как математиков, так и шахматных мастеров и гроссмейстеров, занимающихся шахматными программами, имеется чувство уверенности, что шахматная программа, играющая в силу шахматного мастера, будет со временем написана.
Может ли это иметь место в применении к любым задачам? Этот вопрос в настоящее время следует признать открытым. Однако многие выдающиеся математики склоняются в пользу отрицательного ответа. О мнении одного из них — Дж. фон Неймана — стоит сказать специально.
Джон фон Нейман (1903—1957) принадлежал к числу великих математиков и естествоиспытателей XX столетия. Получив разностороннее — математическое и естественнонаучное — образование (он имел диплом инженера-химика) в Европе (сам он родился в Будапеште), он связал свою научную судьбу с американской наукой. Начав свой путь в науке с логики (фон Нейман явился создателем одной из первых аксиоматических теорий множеств), он стоял у колыбели современной вычислительной техники [9]. Он глубоко разработал теоретические основы квантовой механики. Вместе с Н. Винером и К. Шенноном фон Нейман явился создателем кибернетики, к которой пришел от математической теории автоматов, основы которой сам и заложил. Еще ранее он почти единолично создал такую дисциплину, как теория игр, столь важную ныне в теоретической кибернетике. Примечательно, что он не был только «чистым» математиком, а, обладая глубоким естественнонаучным образованием, плодотворно занимался приложениями математического аппарата [10].
В конце своей жизни фон Нейман глубоко раздумывал над возможностями ЭВМ и автоматов в решении сложных задач, над «природой» вычислительной машины и человеческого мышления. Рассматривая задачу о машинном моделировании нейронных структур мозга, он пришел к гипотезе, что если система достигает определенной ступени сложности, ее описание — и, значит, моделирование на любой машине — не может быть проще, чем она сама. Приведем соответствующие идеи фон Неймана в его собственном изложении, так как они представляют огромный интерес; высказанные более четверти века тому назад, они полностью сохраняют свою силу и по сие время.
«Нет сомнения в том, что любую отдельную фазу любой мыслимой формы поведения можно «полностью и однозначно» описать с помощью слов. Это описание может быть длинным, однако оно всегда возможно. Отрицать это означает примкнуть к разновидности логического мистицизма, от чего большинство из нас, несомненно, далеки. Имеется, однако, существенное ограничение, состоящее в том, что все сказанное применимо только к каждому элементу поведения, рассматриваемому в отдельности, но далеко не ясно, как все это применять ко всему комплексу поведения в целом».
Читать дальше