Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако в любом случае ясно, что шахматы в принципе, так сказать, запрограммированы — несложные правила движения фигур и характеристика матовых ситуаций без труда переводятся на язык элементарных действий, доступных ЭВМ. Будь машины более быстродействующими и имей они достаточно большую память, они просчитали бы все варианты игры и запомнили все ее дерево, превратившись в «абсолютных» шахматистов. Эта игра в таком случае потеряла бы «интеллектуальный» интерес как объект исследования, подобно играм в «волки и овцы» и «крестики и нолики», свойства которых известны: в первой игре всегда выигрывают овцы, если они играют правильно, а во второй игре при наилучшей стратегии сторон всегда имеет место ничья.

Таким образом, следует отличать потенциальную осуществимость, о которой идет речь в кибернетическом тезисе (как и в других тезисах о вычислимости), от осуществимости посредством реально имеющихся средств. Ибо совпадать оба вида вычислимости могут только для сверхъестественного интеллекта.

В романе М. А. Булгакова «Мастер и Маргарита» есть сцена, в которой Воланд — этот гётевский Мефистофель русской литературы — с увлечением играет с другими представителями нечистой силы в шахматы. Поскольку Воланда и его свиту можно считать бесконечно быстрыми вычислителями с бесконечно большим объемом памяти (это подтверждается событиями, описанными в романе), игра в шахматы должна быть для них нелепым и скучным занятием; все дерево игры должно быть перед ними как на ладони! Игра, таким образом, не может быть для них интересной, и получается, что данная сцена с «кибернетической» точки зрения не очень убедительна. Что же касается людей, то шахматы не утратили бы для них интереса, если бы даже свойства игры были полностью выяснены и существовали автоматы, реализующие «абсолютные» шахматные игры; ведь сохранились (да и какой интерес вызывают!) состязания по бегу, хотя автомобили, поезда и самолеты «бегают» куда быстрее людей...

Но вернемся к математику, получившему заказ на выполнение умственной работы с помощью «усилителя интеллекта» — мощной вычислительной техники. Помимо того случая, когда длительность и объем соответствующих вычислений выходят за рамки возможностей данной ЭВМ, математик ответит заказчику отказом еще в одном случае если тот, кто предложил ему задачу, не сможет толково объяснить, какой детерминированный процесс нужно осуществить. Есть пословица «хорошо поставить проблему — значит наполовину решить ее»; для математика, в распоряжении которого имеется ЭВМ, это особенно справедливо.

Коль скоро хороший математик-программист поймет постановку задачи, он сумеет рано или поздно (то есть опять-таки «в принципе», в предположении неограниченного времени, пространства и материалов) перевести ее на язык вычислительной машины. Но если объяснения заказчика будут не ясными, если в цепи мыслей у него будут разрывы, заполненные лишь смутными, недодуманными до конца идеями или выражением собственного отношения к предмету, то самый выдающийся программист окажется бессильным. Процесс, который его просят осуществить, в таком случае не будет ЭВМ-вычислимым. Но будет ли он вычислимым в каком-либо другом, пусть даже очень широком смысле?

Можно попытаться представить себе дальнейшее развитие событий при встрече этих двух людей. Математик после нескольких безуспешных выслушиваний заказчика начнет все откровеннее говорить последнему, что у него не все в порядке с ясностью понятий, строгостью и логикой. Тогда может произойти следующее: заказчик, не будучи в состоянии ясно изложить проблему, а математик — помочь ему в постановке задачи, не смогут договориться друг с другом, и заказчик покинет вычислительный центр с убеждением, что кибернетика — это красивый мыльный пузырь, который лопается при соприкосновении с реальностью, математик же подумает: правы те, кто считает математику единственной точной наукой, представители же нематематических наук говорят то, что сами до конца не понимают. Наверно, больше всего достанется при этом ученым-гуманитариям...

Но диалог математика и нематематика может иметь и иной исход. Нематематик может понять, что в его объяснениях действительно имеются неясности, которые можно устранить. А математик может взяться за освоение фактического материала предложенной задачи, с тем чтобы уточнить ее постановку. При этом он произведет — с одобрения нематематика — разумные упрощения задачи, делающие ее доступной для имеющейся в его распоряжении ЭВМ. Либо же математик выяснит, что, хотя задача (в определенных упрощениях) поддается точной формулировке, современных средств вычислительной техники недостаточно для ее решения. Тогда нематематику придется подождать, когда вычислительные мощности возрастут настолько, что задача окажется доступной для машинного решения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x